Cho pt:x2-(2m-1)x+m(m-1)=0. Tìm mđể pt có 2no pb x1, x2 sao cho x1<x2. C/M x12-2x2+3≥0
3. Cho pt : x^2 - 2 (m-1) . x+m^2 =0 M? Pt có 2No pb x1 x2 t/m (x1 -x2) ^2 + 6m = x1 - 2x2
3. Cho pt :x2 + 2mx - 2m -1 = 0 . M?ta có 2No p biệt x1 , x2 t/m 6/x1 =x1 + 1/x2
Δ=(2m)^2-4(-2m-1)
=4m^2+8m+4=(2m+2)^2
Để pt có hai nghiệm pb thì 2m+2<>0
=>m<>-1
x1+x2=-2m; x1x2=-2m-1
x1^2+x2^2=(x1+x2)^2-2x1x2
=(-2m)^2-2(-2m-1)
=4m^2+4m+2
\(\dfrac{6}{x1}=\dfrac{x1+1}{x2}\)
=>x1^2+x1-6x2=0
=>4m^2+4m+2-x2^2+-2m-x2-6x2=0
=>-x2^2-7x2+4m^2+2m+2=0
=>\(x_2^2+7x_2-4m^2-2m-2=0\)(1)
\(\text{Δ}=7^2-4\left(-4m^2-2m-2\right)\)
\(=49+16m^2+8m+8\)
=16m^2+8m+57
=16m^2+8m+1+56=(4m+1)^2+56>=56>0
=>(1)luôn có nghiệm
cho pt x^2 -2(m+3)x +2m +5=0 (1).
tìm các gt của m để (1) có 2 nghiệm dương pb x1,x2 sao cho 1/căn x1 + 1/căn x2 = 4/3
Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .
Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)
Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)
\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)
\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)
Vậy \(m=2.\)
3. Cho pt : x^2 + x + 2m - 4 =0 M ? pt có 2No p biệt x1 , x2 t/m : x^2 1= 2x2 + 5
\(\Delta'=1-4\left(2m-4\right)>0\Rightarrow m< \dfrac{17}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=2m-4\end{matrix}\right.\)
Từ \(x_1+x_2=-1\Rightarrow x_2=-1-x_1\)
Thế vào \(x_1^2=2x_2+5\)
\(\Rightarrow x_1^2=2\left(-1-x_1\right)+5\)
\(\Leftrightarrow x_1^2+2x_1-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-2\\x_1=-3\Rightarrow x_2=2\end{matrix}\right.\)
Thế vào \(x_1x_2=2m-4\)
\(\Rightarrow\left[{}\begin{matrix}2m-4=-2\\2m-4=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)
x^2 - (2m-1)x+ m^2 =0
a) Tìm điều kiện của m để pt trên có nghiệm
b) Gọi x1,x2 là 2no pt trên.Tìm m để x1^2 +(2m-1)x2=8
cho pt:x2-5x+2m-2=0 tìm m để pt có 2 nghiệm dương phân biệt x1 x2 thỏa mãn: \(\sqrt{\text{(x^2-4x_1+2m-2)}}+\sqrt{x_2}\)=3
B1.Tìm các gt của m để pt:
x^2 - 2mx+m-2=0
Có 2no ple x1 x2 thỏa mãn M=\(\frac{2x1x2-\left(x1+x2\right)}{x1^2+x2^2-6x1x2}\)đạt GTNN
B2.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
B3.Tìm các gtrị của k để x^2 -(k-3)x-k+6=0.Có 1no dương duy nhất
B4.Cho pt : x^2+4x-3m+1=0.Tìm m để:
a)Pt có đúng 1no âm
b)Pt có 2no x1<x2<2
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
cho pt mx2 + 3(m+1)x +2m+4 = 0 . tìm m đêr pt có 2 nghiệm pb x1 ,x2 thỏa mãn tổng bình phương hai nghiệm bằng 4
Pt có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)
\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)
\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3