4x + 6x =
98x + 2x =
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
2x.4x.6x.8x...............96x.98x
tính giá trị biểu thức
(x+3x+4x+5x+....+98x+99x+100x):(5x+100x+99x+98x+...+6x+4x+3x+2x+x)
Tìm x,biết:
2x+4x+6x+...+98x+100x=51.102
\(2x+4x+6x+........+98x+100x=51.10^2\)
\(\Rightarrow x\left(2+4+6+.........+98+100\right)=51.100\)
\(\Rightarrow x.2550=5100\)
\(\Rightarrow x=5100:2550\)
\(\Rightarrow x=2\)
Vậy x = 2
\(2x+4x+6x+...+100x=51.10^2\)
\(\Rightarrow x\left(2+4+...+100\right)=5100\)
\(\Rightarrow x\left(\frac{\left[\left(100-2\right):2+1\right].\left(100+2\right)}{2}\right)=5100\)
\(\Rightarrow x\left(\frac{50.102}{2}\right)=5100\)
\(\Rightarrow\frac{5100x}{2}=5100\)
\(\Rightarrow5100x=5100.2\)
\(\Rightarrow x=2\)
2x + 4x + 6x + ...+ 98x + 100x = 51.102
x.(2+4+6+...+98+100) = 51.100
\(x.\left[\left(2+100\right).50:2\right]=5100\)
x. 2550 = 5100
x = 5100 : 2550
x = 2
•мấү❖тɦíм❖¢ɦỉ❖εм❖bàĭ❖ηầү❖¢áĭ⁀ᶦᵈᵒᶫ
a)2x+4x+6x+8x+.......96x+98x+100
b) x+3x +5x+7x+..... 97x+99x
❖χ = мấу ạ ᴾᴿᴼシ
Phải có tổng chứ ???
P/S : ghi đề mak cg màu mè
hok tốt
a) = 5100
b) = 7500
em quên mấy pro ạ=))
( x+1) + (x+3) + (x+5)+......+ (x+47)+(x+49) =700
AND
2x+4x+6x+8x+.....+98x+100x =5100
THANKS
(x+1)+(x+3)+.........+(x+49)=700
x+1+x+3+........+x+49=700
25x+(1+3+5+......+49)=700
25x+625=700
25x=700-625
25x=75
x=75:25
x=3
2x+4x+6x+...........+100x=5100
(2+4+6+....+100)x=5100
2550x=5100
x=5100:2550
x=2
Phân tích đa thức thành nhân tử:
a/ 3x2-8x+4
b/4x4+81
c/x8+98x4+1
d/x4+6x3+7x2-6x+1
a)\(3x^2-8x+4\)
\(=3x^2-2x-6x+4\)
\(=x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b)\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
c)\(x^8+98x^4+1\)
\(=\left(x^8+2x^4+1\right)+96x^4\)
\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
d)\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)
\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)
Phân tích đa thức thành nhân tử
a)x^3-x^2-4
b)x^3+5x^2+8x+4
c)x^4+1997x^2+1996x+1997
d)x^8+98x^4+1
e)x^7+x^2+1
f)x^4+6x^3+7x^2-6x+1
Tìm x:
a)2x^2-15x+18=0
b)4x^2-2 căn3x=0,25
Giúp mình với, mình đang cần gấp
chứng minh biểu thức không phụ thuộc vào x
\(A=2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
\(B=sin^6x+cos^6x-2sin^4x-cos^4x+sin^2x\)
\(C=\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)
\(D=\frac{1}{cos^6x}-tan^6x-\frac{tan^2x}{cos^2x}\)
\(A=2(\sin ^6x+\cos ^6x)-3(\sin ^4x+\cos ^4x)\)
\(=2(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)
\(=2(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)
\(=-(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x)=-(\sin ^2x+\cos ^2x)^2=-1^2=-1\)
là giá trị không phụ thuộc vào biến (đpcm)
-----------------------
\(B=\sin ^6x+\cos ^6x-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=-\sin ^4x-\sin ^2x\cos ^2x+\sin ^2x=-\sin ^2x(\sin ^2x+\cos ^2x)+\sin ^2x\)
\(=-\sin ^2x+\sin ^2x=0\)
là giá trị không phụ thuộc vào biến (đpcm)
\(C=(\sin ^4x+\cos ^4x-1)(\tan ^2x+\cot ^2x+2)=(\sin ^4x+\cos ^4x-1)(\frac{\sin ^2x}{\cos ^2x}+\frac{\cos ^2x}{\sin ^2x}+2)\)
\(=(\sin ^4x+\cos ^4x-1).\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=(\sin ^4x+\cos ^4x-1).\frac{(\sin ^2x+\cos ^2x)^2}{\sin ^2x\cos ^2x}\)
\(=(\sin ^4x+\cos ^4x-1).\frac{1}{\sin ^2x\cos ^2x}=\frac{(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}\)
\(=\frac{(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{1-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{-2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=-2\)
là giá trị không phụ thuộc vào biến $x$
--------------------
\(D=\frac{1}{\cos ^6x}-\tan ^6x-\frac{\tan ^2x}{\cos ^2x}=\frac{1}{\cos ^6x}-\frac{\sin ^6x}{\cos ^6x}-\frac{\sin ^2x}{\cos ^4x}\)
\(=\frac{1-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{(\sin ^2x+\cos ^2x)^3-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)
\(=\frac{\sin ^6x+\cos ^6x+3\sin ^2x\cos ^2x(\sin ^2x+\cos ^2x)-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)
\(=\frac{\cos ^6x+3\sin ^2x\cos ^2x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{\cos ^4x+2\sin ^2x}{\cos ^4x}\)
\(=1+\frac{2\sin ^2x}{\cos ^4x}\)
Giá trị biểu thức này vẫn phụ thuộc vào $x$. Bạn xem lại đề.
A=sin^6x +3sin^4x nhân cos^2x+3sin^2x nhân cos^4x+cos^6x
Ta có: \(A=\sin^6x+3\cdot\sin^4x\cdot\cos^2x+3\cdot\sin^2x\cdot\cos^4x+\cos^6x\)
\(=\left(\sin^2x+\cos^2x\right)^3\)
=1