Cho hai số a, b > 0 và a + b = 1. Chứng minh \(a^2+b^2\ge\frac{1}{2}\)
Cho hai số a,b > 0 và a+b=1. Chứng minh a2 + b2 \(\ge\frac{1}{2}\)
Sr nha,giờ ms đọc dc tin nhắn :(
\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
Dấu "=" xảy ra tại \(a=b=\frac{1}{2}\)
Svacc -xơ
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
(Dấu "="\(\Leftrightarrow a=b=\frac{1}{2}\))
1)cho a,b là hai số dương và a+b=1
chứng minh rằng:\(^{a^2+b^2\ge\frac{1}{2}}\)
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+a^2+b^2 >= a^2+2ab+b^2
<=> 2.(a^2+b^2) >= (a+b)^2
<=> a^2+b^2 >= (a+b)^2/2 = 1^2/2 = 1/2
=> đpcm
Dấu "=" xảy ra <=> a=b=1/2
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+a^2+b^2 >= a^2+2ab+b^2
<=> 2.(a^2+b^2) >= (a+b)^2
<=> a^2+b^2 >= (a+b)^2/2 = 1^2/2 = 1/2
=> đpcm
Dấu "=" xảy ra <=> a=b=1/2
Tk mk nha
Cho a>0, b>0 và a+b=1
Chứng minh rằng: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{25}{2}\)
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Áp dụng Buhiacopxki có \(\left(\left(\frac{m}{\sqrt{x}}\right)^2+\left(\frac{n}{\sqrt{y}}\right)^2\right)\left(\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right)\ge\left(m+n\right)^2\)
\(\RightarrowĐPCM\)
Cho a,b,c > 0 và a+b+c=3
Chứng minh \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Bài này đăng nhiều trên OLM rồi, lời giải vắn tắt:
\(VT=\Sigma_{cyc}\frac{a}{1+b^2}=\Sigma_{cyc}\left(a-\frac{ab^2}{1+b^2}\right)=3-\Sigma_{cyc}\frac{ab^2}{1+b^2}\)
\(\ge3-\Sigma_{cyc}\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)(bđt cô - si)
Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng từng vế của các bđt trên:
\(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge a+b+c-\frac{ab+bc+ca}{2}\)
Dễ c/m: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le3\)
\(BĐT\ge3-\frac{3}{2}=\frac{3}{2}\)
hay \(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge\frac{3}{2}\)
(Dấu "="\(\Leftrightarrow a=b=1\))
๖²⁴ʱČøøℓ ɮøү ²к⁷༉ chả khác gì cách tui:v
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a, b >0 và a+b=1 .Chứng minh:
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\)
Ta có
\(\left(a+\frac{1}{b}\right)^2+\frac{25}{4}+\left(b+\frac{1}{a}\right)^2+\frac{25}{4}=\left[\left(a+\frac{1}{b}\right)^2+\left(\frac{5}{2}\right)^2\right]+\left[\left(b+\frac{1}{a}\right)^2+\left(\frac{5}{2}\right)^2\right]\ge5\left(a+\frac{1}{b}\right)+5\left(b+\frac{1}{a}\right)\)
\(=5\left(a+b\right)+5\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\ge5\left(a+b\right)+5.\frac{4}{a+b}\)
\(=5.1+\frac{5.4}{1}=25\)
\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\)
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{25}{2}\) ms đúng
Cho a > 0, b > 0 và a + b = 1. Chứng minh \(a^2+b^2\ge\frac{1}{2}\)