Tìm min \(A=\frac{12x-9}{x^2+2x+3}\)
1) Tìm min
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
2) Tìm Max, Min
a) A=\(\frac{27-12x}{x^2+9}\) b) B=\(\frac{8x+3}{4x^2+1}\)
c) C=\(\frac{2x+1}{x^2+2}\)
A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)
ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt thì x2-8x+22 nhỏ nhất
SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)
GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4
vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4
B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)
Dặt \(\frac{1}{x}\)=t ta có
B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3 dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2
\(\Leftrightarrow\)\(\frac{1}{x}\)=2
\(\Leftrightarrow\)=\(\frac{1}{2}\)
vậy GTNN là -3 tại x=1/2
2,a, GTNN A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1
do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1
dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6
vậy GTNN của A=-1 tại x=6
B,GTNN B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1
DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1
dấu =xảy ra khi và chỉ khi 4(x+1)2=0
\(\Leftrightarrow\)x=-1
vạy GTNN của B=-1 tại x=-1
C, GTLN C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)
DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\) 2- \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2
dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1
Vậy GTLN của c=2 tại x=1
tìm MIN\(M=\frac{12x+9}{x^2+1}\)
B1:Tìm min A= \(\frac{x^2-2x+9}{x^2}\)
B2: Tim min B=\(\frac{12}{x-1}\)+ \(\frac{x}{3}\) với x\(\ge\)1
B3: Tìm min C= /x-10/+/x-11/+/x-12/+/x-13/
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Tìm Min
D(x)=\(\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
\(D\left(x\right)=\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
Đặt \(a=x^2+2x+1=\left(x+1\right)^2\ge0\)
\(\Rightarrow\)\(D\left(x\right)=\frac{\left(a+2\right)\left(a+8\right)}{a}=\frac{a^2+10a+16}{a}\)
Áp dụng BĐT AM-GM ta có:\(a^2+16\ge2\sqrt{a^2.16}=2.4a=8a\)
\(\Rightarrow D\left(x\right)\ge\frac{8a+10a}{a}=\frac{18a}{a}=18\)
Nên minD(x)=18 đạt được khi \(a=4\Leftrightarrow\left(x+1\right)^2=4\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
1) Tìm GTLN và GTNN:
a) A=\(\frac{27-12x}{x^2+9}\)
b) B=\(\frac{8x+3}{4x^2+1}\)
c) C=\(\frac{2x+1}{x^2+2}\)
d) D=\(\frac{3x^2-2x+3}{x^2+1}\)
Cho biểu thức A=\(\sqrt{x^2+2x+\frac{3}{4}+\sqrt{x^2+3x+\frac{9}{4}}}\) với x\(\ge\frac{-3}{2}\)
1. Tìm min A
2. Tìm các giá trị của x, biết 2A=\(2x^3+5x^2+5x+3\)
\(A=\left(\frac{2+4x}{8+4x}-\frac{x}{3x-6}+\frac{2x^3}{12x-3x^3}\right)\div\frac{6x+13x^2}{24x-12x^2}\)
a) Tìm TXĐ và Rút gọn A
b) Tìm x để \(A>0,A>-1\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
tìm Min \(A=\frac{9-x}{2x}+\frac{2}{x}\) với 0<x<2
giúp mình nha mn
1. A = 9/(2/x-1) + 2/x = 9/(y-1) + y (với y = 2/x > 1).
Sử dụng BĐT Cauchy (Cô-si): A = 1+ 9/(y-1) + (y-1) >= 1+ 2*căn9 = 7 (vì y - 1 > 0 do y > 1). Dấu = xảy ra khi 9/(y-1) = (y-1) tương đương y-1 = 3 hay y = 4 tức x = 1/2.
2. B = 3(1-x + x)/(1-x) + 4/x = 3 + 3x/(1-x) + 4/x = 3 + 12/(4/x - 4) + 4/x = 7 + 12/(4/x - 4) + (4/x - 4) >= 7 + 4căn3. Dấu = khi 12/(4/x - 4) = (4/x - 4) hay 4/x - 4 = 2căn3 (bạn tự tìm x nhé).
3. Sử dụng BĐT Bunhi: Q*2 = [x²/(y+z) + y²/(z+x) + z²/(x+y)]*[(y+z) + (z+x) + (x+y)] >= [(x/căn(y+z))*căn(y+z) + y/căn(x+z))*căn(x+z) + z/căn(y+x))*căn(y+x)]^2 = (x+y+z)^2 = 4 hay Q>=1/2.
Dấu = xảy ra khi x = y = z = 2/3.
4. Sử dụng BĐT Bunhi: (x²)² + (y²)² >= [(x²) + (y²)]²/2 >= [(x+y)²/2]²/2 = 1/8.
mà mấy bài đó ko phải bài mà mình muốn hỏi bạn ạ