Tìm giá trị nhỏ nhất của biểu thức A=2015/(IxI-3) với x là số nguyên
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2015}{\left|x\right|-3}\) với x là số nguyên
A= \(\frac{2015}{\left|x\right|-3}\)
Ta có \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|-3\ge-3\forall x\)
\(\Rightarrow\frac{2015}{\left|x\right|-3}\le\frac{2015}{-3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x\right|=0\)
\(\Leftrightarrow x=0\)
Vậy MaxA = \(\frac{-2015}{3}\) \(\Leftrightarrow x=0\)
@@ Học tốt @@
## Chiyuki Fujito
Để A có giá trị nhỏ nhất thì 2015/|x|-3 có giá trị nhỏ nhất => |x|-3 có giá trị nhỏ nhất => |x| có giá trị nhỏ nhất mà x lá số nguyên nên |x|=0 => x=0 . Vậy A có GTNN là 2015/0-3 = 2015/-3 khi và chỉ khi x=0
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2015}{\left|x\right|-3}\) với x là số nguyên
Tìm giá trị nhỏ nhất của biểu thức P=|x-2015|+|x-2016|+|x-2017| và x với x là số nguyên
\(|x-2015|+|x-2016|+|x-2017|< =>\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
=>\(\left|x-2105\right|+\left|2017-x\right|+\left|x-2016\right|\ge\left|x-2015+2017-x\right|+0=2+0=2\)
dấu '=' xảy ra <=>\(\left\{{}\begin{matrix}x=2016\\2015\le x\le2017\end{matrix}\right.\)<=>x=2016
vậy giá trị nhỏ nhất của P=2 khi x=2016
P = |x - 2015| + |x - 2016| + |x - 2017|
<=> P = |x - 2015| + |2017 - x| + |x - 2016|
Áp dụng BĐT |a| + | b| lớn hơn hoặc bằng |a + b| có :
|x - 2015| + |2017-x| + |x - 2016| lớn hơn hoặc bằng |x - 2015 + 2017 - x| + |x - 2016| = 2 + |x + 2016|
Dấu "=" xảy ra khi
(x - 2015) (2017 - x) lớn hơn hoặc bằng 0
và |x - 2016| = 0 => x = 2016
Có : x - 2015 lớn hơn hoặc bằng 0 và 2017 - x lớn hơn hoặc bằng 0
=> 2015 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2017
-> x = 2016 (tm)
Vậy GTLN của P = 2 <=> x = 2016
Tìm giá trị nhỏ nhất của biểu thức A= (x-7)/(x-3) với x là số nguyên
3/ Tìm giá trị nhỏ nhất của biểu thức A= |2x-2|+|2x-2013| với x là số nguyên
A=|2x-2|+|2x-2013|=|2x-2|+|2013-x|
Áp dụng BĐT:|a|+|b|>=|a+b|
Ta có:|2x-2|+|2013-x|>=|2x-2+2013-2x|=2011
Dấu "=" xảy ra<=>(2x-2)(2013-2x)>=0<=>1<=x<=2013/2
với giá trị nào của x thì biểu thức A= /x-2016/ + 2015 có giá trị nhỏ nhất ? tìm giá trị nhỏ nhất đó
Vì /x-2106/ >= 0
=> /x-2016/+2015 >= 2015
=> Min = 2015 <=> x = 2016
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Cho biểu thức A = 2015 – (a + b), với a > b, a và b là các số có một chữ số. Tìm giá trị nhỏ nhất của A. Giá trị nhỏ nhất của A là ......
Với giá trị nào của x thì biểu thức A=lx-2016l+2015 có giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó ?