Cho x,y>0 thỏa mãn \(x^2+y^2+6xy\le8tìmminA=\frac{1}{x}+\frac{1}{y}\)
Cho x,y>0 thỏa mãn:\(x^3+y^3+6xy\le8\). Tìm Min \(A=\frac{1}{x}+\frac{1}{y}\)
với x;y>0 ta có:\(\)
\(8>=x^3+y^3+6xy\Rightarrow8+1=9>=x^3+y^3+1+6xy>=3\sqrt{x^3y^3\cdot1}+6xy=3xy+6xy=9xy\) (bđt cosi)
\(\Rightarrow9>=9xy\Rightarrow1>=xy\Rightarrow xy< =1\)
\(A=\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{xy}>=\frac{2}{1}=2\)(bđt cosi)
dấu = xảy ra khi x=y=1
vậy min A là 2 khi x=y=1
\(x^3+y^3+1+6xy>=3\sqrt[3]{x^3y^3\cdot1}=3xy+6xy=9xy\)
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
Cho x,y thỏa mãn điều kiện \(x^2+y^2+8=6xy\).Tính giá trị của biểu thức :
\(A=4\left(x+y\right)-\left(x+2\right)\left(\frac{2}{y}+1\right)\left(\frac{y}{x}+1\right)\)
cho x ,y,z khác 0 thỏa mãn x+y+z=0 Tính giá trị của biểu thức M=\(\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
thay z = -(x+y) , y = -(z+x),... vao
=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0
cho x,y,z khác o thỏa mãn x+y+z=0
C/m \(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}|\)
Đề sai; t giải theo đề đúng; ô kê
\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}}=\sqrt{\frac{y^2\left(x+y\right)^2+x^2\left(x+y\right)^2+x^2y^2}{x^2y^2\left(x+y\right)^2}}\)
\(=\sqrt{\frac{x^4+y^4+x^2y^2+2x^2y^2+2xy^3+2x^3y}{x^2y^2\left(x+y\right)^2}}=\sqrt{\frac{\left(x^2+xy+y^2\right)^2}{x^2y^2\left(x+y\right)^2}}\)
\(=\left|\frac{x^2+xy+y^2}{xy\left(x+y\right)}\right|=\left|\frac{x}{y\left(x+y\right)}+\frac{y}{x\left(x+y\right)}+\frac{1}{x+y}\right|\)
Cho x, y là các số dương thỏa mãn: \(x^3+8y^3-6xy+1=0\)
Tính giá trị của biểu thức: \(x^{2018}+\left(y-\frac{1}{2}\right)^{2019}\)
Áp dụng BĐT Cô si ta có:
\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)
\(\Rightarrow x^3+8y^3+1-6xy\ge0\)
Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)
Khi đó:
\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)
Cho x, y > 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}=2\) Chứng minh: \(\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{1}{2}\)
\(VT=\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{\sqrt{x}}{2x\sqrt{y}+2y\sqrt{x}}+\frac{\sqrt{y}}{2y\sqrt{x}+2x\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{1}{2\sqrt{xy}}\)
Có \(2=\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)\(\Leftrightarrow\)\(\frac{1}{2\sqrt{xy}}\le\frac{1}{2}\)
\(\Rightarrow\)\(VT\le\frac{1}{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=y\\y^2=x\\\frac{1}{x}=\frac{1}{y}\end{cases}\Leftrightarrow x=y}\)
...
1.Cho a, b, c đôi một khác nhau và khác 0 thỏa mãn
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=m\left(m>0\right).\)
Tính \(m\)
2. Cho x,y,z thỏa mãn x^3=3x-1;y^3=3y-1;z^3=3z-1
Tính A=x^2+y^2+z^2
3. Cho a+b+c=0 thỏa mãn \(\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\). Chứng minh
\(xa^2+yb^2=\left(x+y\right).c^2\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Làm trước câu 3:
Ta có:
\(\frac{1x}{a}+\frac{y}{b}=\frac{x+y}{c}\)
\(\Leftrightarrow1bcx+acy=abx+aby\)
\(\Leftrightarrow1x\left(bc-ab\right)=y\left(ab-ac\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{a\left(b-c\right)}{b\left(C-a\right)}\)
Ta cần chứng minh
\(1xa^2+yb^2=\left(x+y\right)c^2\)
\(\Leftrightarrow1x\left(a^2-c^2\right)=y\left(c^2-b^2\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{\left(c-b\right)\left(c+b\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a\left(b-c\right)}{b\left(c-a\right)}\)
Vậy ta có ĐPCM
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Cho x,y,z thỏa mãn 0<x,y,z<hoặc = 1 và x+y+z=2 CMR \(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge\frac{1}{2}\)