Áp dụng BĐT Cô-si ta có:
\(x^2+y^2+6xy\ge2\sqrt{x^2y^2}+6xy=8xy\Rightarrow8\ge8xy\Rightarrow xy\le1\)
Áp dụng BĐT Cô-si ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}=2}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x^2+y^2+6xy=8\end{cases}\Leftrightarrow x=y=1}\)
Vậy \(A_{min}=2\)khi \(x=y=1\)