Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Trần Bảo Hoàng_8A
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2022 lúc 23:07

d: =>4x+6=15x-12

=>4x-15x=-12-6=-18

=>-11x=-18

hay x=18/11

e: =>\(45x+27=12+24x\)

=>21x=-15

hay x=-5/7

f: =>35x-5=96-6x

=>41x=101

hay x=101/41

g: =>3(x-3)=90-5(1-2x)

=>3x-9=90-5+10x

=>3x-9=10x+85

=>-7x=94

hay x=-94/7

Dương Tinh Tú
Xem chi tiết
Rotten Girl
5 tháng 12 2018 lúc 9:11

1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)\(\frac{6x}{3xy}\)=\(\frac{3}{y}\)

2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1

3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)

4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)

5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)

=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)

Trần Thị Trà My
Xem chi tiết
Đặng Minh Triều
19 tháng 7 2016 lúc 15:41

\(a,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) (x khác -3; khác 0)

\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x}{2x.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x-x+6}{2x.\left(x+3\right)}=\frac{2x+6}{x.\left(2x+6\right)}=\frac{1}{x}\)

 

Đặng Minh Triều
19 tháng 7 2016 lúc 15:43

\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) (x khác 0 , khác 1/2 khác -1/2 )

\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\left(\frac{4x^2+4x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^2-4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5.\left(2x-1\right)}{4x}=\frac{10}{2x+1}\)

Đặng Minh Triều
19 tháng 7 2016 lúc 15:46

\(c,\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\) (x khác 1 ; khác -1)

\(=\frac{x.\left(x+1\right)}{5.\left(x^2-2x+1\right)}.\frac{5x-5}{3x+3}=\frac{x.\left(x+1\right)}{5.\left(x-1\right)^2}.\frac{5\left(x-1\right)}{3.\left(x+1\right)}=\frac{x}{3.\left(x-1\right)}=\frac{x}{3x-3}\)

Nguyễn Thanh Thảo
Xem chi tiết
Trần Thị Trà My
Xem chi tiết
Kaijo
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
16 tháng 3 2020 lúc 9:06

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)

\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)

\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)

\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)

Khách vãng lai đã xóa
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
16 tháng 3 2020 lúc 9:13

chỗ cuối tớ sai 

\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)

đây nha , e xin lỗi

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
16 tháng 3 2020 lúc 15:27

a) \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)

                                                          \(=\frac{3\left(x-1\right)+\left(2x-1\right)-2.2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{3x-2x+4x^2-2x-4x^2+4x-4x+4}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{x+1}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{1}{2x\left(x-1\right)}\)

b) \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

                                                   \(=\frac{3x.10\left(x-y\right)-x.5\left(x+y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{30x\left(x-y\right)+5x\left(x+y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{5x\left[6\left(x-y\right)-\left(x+y\right)\right]}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{5x\left(5x-7y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{x\left(5x-7y\right)}{10\left(x-y\right)\left(x+y\right)}\)

c) \(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}=\frac{5x^2-y-x\left(3x-2y\right)}{xy}\)

                                                \(=\frac{5x^2-y-3x^2+2xy}{xy}\)

                                               \(=\frac{2x^2-y+2xy}{xy}\)

d) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

                                            \(=\frac{3x-x+6}{2x\left(x+3\right)}\)

                                            \(=\frac{2x+6}{2x\left(x+3\right)}\)

                                            \(=\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)

                                            \(=\frac{2}{2x}=\frac{1}{x}\) 

Khách vãng lai đã xóa
Linh Đặng
Xem chi tiết
some one
17 tháng 3 2020 lúc 16:31

\(\frac{2x-1}{2}\)-1=\(\frac{x^2+x-3}{x-1}\)-\(\frac{5x-2}{2-2x}\)

\(\frac{2x-1}{2}\)-1=\(\frac{x^2+x-3}{x-1}\)-\(\frac{5x-2}{2\left(1-x\right)}\)

\(\frac{\left(2x-1\right)\left(x-1\right)}{2\left(x-1\right)}\)-\(\frac{2\left(x-1\right)}{2\left(x-1\right)}\)=\(\frac{2\left(x^2+x-3\right)}{2\left(x-1\right)}\)+\(\frac{5x-2}{2\left(x-1\right)}\)

2x2-x-2x+1-2x+2=2x2+2x-6+5x-2

2x2-x-2x+1-2x+2-2x2-2x+6-5x+2=0

2x2-2x2-x-2x-2x-2x-5x+1+2+6+2=0

11-12x=0

12x=11

x=\(\frac{11}{12}\)

Khách vãng lai đã xóa
Nguyễn Bảo Anh
Xem chi tiết
Đoàn Phong
Xem chi tiết
Võ Đông Anh Tuấn
8 tháng 11 2016 lúc 8:05

Thực hiện các phép đổi tương đương , ta đưa ( 1 ) về dạng :

\(\frac{x+4}{2x^2-5x+2}-\frac{x+4}{2x^2-7x+3}=0\)

\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{2x^2-5x+2}-\frac{1}{2x^2-7x+3}\right)=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(1-2x\right)}{\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)}=0\)

\(\Leftrightarrow\left(x+4\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{1}{2}\end{array}\right.\)

Thữ vào mẫu thức : Với \(x=\frac{1}{2}\) thì \(2x^2-5x+2=0\)

Với \(x=-4\) thì \(\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)\ne0\)

Vậy phương trình ( 1 ) là cho nghiệm duy nhất là \(x=-4\)