Tìm x ∈ Z :
a) -6<x<0
b)-2<x<2
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
A=\(\dfrac{4\sqrt{x}+6}{\sqrt{x}}\)
a,tìm x\(\in Z,để\) A\(\in Z\)
đk x khác 0
\(A=4+\dfrac{6}{\sqrt{x}}\Rightarrow\sqrt{x}\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Tìm x, y, z biết:
a) x/-4=y/6=z/7 và z-x=12
b) x/2=y/5=z/-6 và 2x-3y+z=34
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{-6}=\frac{2x-3y+z}{2.2-3.5+\left(-6\right)}=\frac{34}{-17}=-\frac{34}{17}=-2\)
\(\frac{x}{2}=-2\Rightarrow x=\left(-2\right).2=-4\)
\(\frac{y}{5}=-2\Rightarrow y=\left(-2\right).5=-10\)
\(\frac{z}{-6}=-2\Rightarrow z=\left(-2\right).\left(-6\right)=12\)
Vậy x=-4 ; y=-10 và z=12
a) \(\frac{x}{-4}=\frac{y}{6}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-4}=\frac{z}{7}=\frac{y}{6}\Rightarrow\frac{z-x}{7-\left(-4\right)}=\frac{12}{11}\)
\(\frac{x}{-4}=\frac{12}{11}\Rightarrow x=-\frac{48}{11}\)
\(\frac{z}{7}=\frac{12}{11}\Rightarrow z=\frac{84}{11}\)
\(\frac{y}{6}=\frac{12}{11}\Rightarrow y=\frac{72}{11}\)
b) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{-6}\Rightarrow\frac{2x}{4}=\frac{3y}{15}=\frac{z}{-6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{3y}{15}=\frac{z}{-6}=\frac{2x-3y+z}{4-15-6}=\frac{34}{-17}=-2\)
\(\frac{2x}{4}=-2\Rightarrow2x=-8\Rightarrow x=-4\)
\(\frac{3y}{15}=-2\Rightarrow3y=-30\Rightarrow y=-10\)
\(\frac{z}{-6}=-2\Rightarrow z=12\)
a)Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{-4}=\frac{y}{6}=\frac{z}{7}=\frac{z-x}{7-\left(-4\right)}=\frac{12}{11}\)
=>\(x=\frac{12}{11}.\left(-4\right)=-\frac{48}{11};y=\frac{12}{11}.6=\frac{72}{11};z=\frac{12}{11}.7=\frac{84}{11}\)
Vậy ...
a,Tìm a,b ∈ Z biết A (b+1) =3
b, tìm n ∈ Z sao cho 2n+7 ⋮ n+1
c, tìm x,y ∈ Z sao cho xy + x-y =6
\(\dfrac{help}{me}\)
a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)
\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)
b) \(2n+7⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)
c) \(xy+x-y=6\left(x;y\inℤ\right)\)
\(\Rightarrow x\left(y+1\right)-y-1+1=6\)
\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)
Tìm x, y, z, biết
a. x/3 = y/9 = z/5 và x.y.z = 45
b. x/6 = y/8 = z/6 và x + y + z = 24
\(a,\text{Ta có: }\frac{x}{3}=\frac{y}{9}=\frac{z}{5}=\frac{xyz}{3.9.5}=\frac{45}{45}=1\left(\text{T/c dãy tỉ số bằng nhau}\right).\)
\(\Rightarrow\frac{x}{3}=1\text{ Vậy }x=3\)
\(\Rightarrow\frac{y}{9}=1\text{ Vậy }y=9\)
\(\Rightarrow\frac{z}{5}=1\text{ Vậy }z=5\)
\(b,\text{Ta có: }\frac{x}{6}=\frac{y}{8}=\frac{z}{6}=\frac{x+y+z}{6+8+6}=\frac{24}{20}=\frac{6}{5}\left(\text{T/c dãy tỉ số bằng nhau}\right)\)
\(\Rightarrow\frac{x}{6}=\frac{6}{5}\text{ Vậy }x=\frac{36}{5}\)
\(\Rightarrow\frac{y}{8}=\frac{6}{5}\text{ Vậy }y=\frac{48}{5}\)
\(\Rightarrow\frac{z}{6}=\frac{6}{5}\text{ Vậy }z=\frac{36}{5}\)
Sr lúc nãy lm hơi vội ý a)
lm lại nha!!
Ta có: x/3=y/9=z/5=xyz/3.9.5=45/135=1/3 (T/c dãy tỉ số bằng nhau)
=>x/3=1/3, vậy x= 1
=>y/9=1/3, vậy y=3
=>z/5=1/3, vậy z= 5/3
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
a, tìm x,y biết x-y-z=30 và x/3 = y/2 = z/6
b, tìm a,b,c biết a+b-c = 15 và a:b:c = 4:5:6
ai giúp e hai câu này vs😥
Bài a:
\(Theo.tính.chất.dãy.tỷ.số.bằng.nhau.ta.có:\\ \dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{6}=\dfrac{x-y-z}{3-2-6}=\dfrac{30}{-5}=-6\\ Vậy:x=-6.3=-18;y=-6.2=-12;z=-6.6=-36\)
Bài b:
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{4+5-6}=\dfrac{15}{3}=5\\ \Rightarrow a=5.4=20;b=5.5=25;c=5.6=30\\ Vậy:a=20;b=25;c=30\)
Vẫn là câu hỏi của một bn
Tìm x thuộc Z để x + 1/x thuộc Z. Tìm a, b thuộc Z để 2/a + 3/b = 5/6
Tìm các số nguyên x,y,z biết:
a) x+y=6 và z-y=-5 và x-z= 9
b) x+y=6 và y+ z= -7 và z+ x= -13
cái này là hệ 3 ẩn rồi
===================================
a, theo bài ra
x+y=6 (1)
-y +z = - 5 (2)
(1) + (2) <=> x+z = 6-5=1 , lại có x-z=9
=> (x+z)+(x-z)=1+9<=> 2x=10<=> x=5 => z = -4
Thay x=5 vào (1) => y=6-x=6-5=1
vậy x=5 , y=1 , z = -4
:V tương tự với câu b nhé
Mk có cách khác nhé:
b) Ta có:
\(x+y-y-z-z-x=6+7+13\)
\(-2z=26\Rightarrow z=-13\)
\(\Rightarrow y=6;x=0\)
Vậy .....