\(a=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}.\)CMR:a\(\le\)2
1.Tìm x
a, \(-\frac{23}{5}.\frac{50}{23}\le x\le-\frac{13}{5}:\frac{23}{17}\)
b,\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
c,\(\frac{x-1}{2014}+\frac{x-2}{2013}=\frac{x-3}{2012}+\frac{x-4}{2011}\)
Tìm số nguyên x biết: a) \(-4\frac{3}{5}.2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
b) \(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
a)Cho các số x,y,z \(\ge\)1.CMR: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\).
b) Cho x,y,z \(\ge\)0 và x\(\le1;y\le1;z\le1\)chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
c)Cho a + b\(\ge\)2.CMR: \(a^3+b^3\le a^4+b^4\)
d)Cho a2+b2\(\ge\frac{1}{4}.CMR:a^4+b^4\ge\frac{1}{32}\)
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
vì \(x,y,z\in\left[0;1\right]\)nên \(x^2\ge x^3;y^2\ge y^3;z^2\ge z^3\)
\(VT\le\frac{1}{1+x^3}+\frac{1}{1+y^3}+\frac{1}{1+z^3}\le\frac{3}{1+xyz}\)đúng theo BĐT câu a vì \(x,y,z\le1\)nên BĐT đổi chiều
Dấu = xảy ra:(x,y,z)=(0;0;0);(1;1;1) ;(1;0;1);(0;1;1);(1;1;0)
A)\(4\frac{1}{3}\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}\left(\frac{1}{3}\cdot\frac{1}{2}-\frac{3}{4}\right)\)
\(a,4\frac{1}{3}\left[\frac{1}{2}-\frac{1}{6}\right]\le x\le-\frac{2}{3}\left[\frac{1}{3}\cdot\frac{1}{2}-\frac{3}{4}\right]\)
=> \(\frac{13}{3}\left[\frac{3}{6}-\frac{1}{6}\right]\le x\le-\frac{2}{3}\left[\frac{1}{6}-\frac{3}{4}\right]\)
=> \(\frac{13}{3}\cdot\frac{1}{3}\le x\le-\frac{2}{3}\cdot\left[\frac{2}{12}-\frac{9}{12}\right]\)
=> \(\frac{13}{9}\le x\le-\frac{2}{3}\cdot\left[-\frac{7}{12}\right]\)
=> \(\frac{13}{9}\le x\le-\frac{1}{3}\cdot\left[-\frac{7}{6}\right]\)
=> \(\frac{13}{9}\le x\le\frac{7}{18}\)
Đến đây tự tìm x
Tìm số nguyên x thuộc z biết:
a) \(\frac{1}{2}-\left(\frac{3}{3}+\frac{4}{4}\right)\le x\le\frac{2}{24}-\left(\frac{1}{8}-\frac{3}{3}\right)\)
b) \(\frac{1}{2}-\frac{1}{6}\le\frac{x-2}{3}\le\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\)
Tìm số nguyên x biết:
a) \(-4\frac{3}{5}.2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
b) \(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
a) \(-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{15}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le\frac{-33}{15}:\frac{21}{15}\)
=> \(-10\le x\le\frac{-11}{7}\)
=> \(x\in\left\{-10;-9,-8,-7,-6,-5,-4,-3,-2,-1\right\}\)
\(Cho\)\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\)
\(CMR:a,A< 100\)
\(b,A>50\)
6
cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
B=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\)
C=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{48}+\frac{1}{50}\)
CMR:A=B-2C
giúp mk với
\(-4\frac{1}{3}\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le\frac{-2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
Ta có: \(-4\frac{1}{3}\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{-13}{3}.\frac{1}{3}=-\frac{13}{9}=\frac{-26}{18}\)
\(-\frac{2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)=\frac{-2}{3}.\frac{-11}{12}=\frac{11}{18}\)
Mà \(\frac{-26}{18}\le x\le\frac{11}{18}\)
\(\Rightarrow x=\left\{\frac{-26}{18};\frac{-25}{18};\frac{-24}{18};.....;\frac{10}{18};\frac{11}{18}\right\}\)