Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thao Vu Phuong
Xem chi tiết
Không Tên
7 tháng 2 2018 lúc 21:06

a)   Xét   \(\Delta MNH\)và     \(\Delta MPH\)có:

       \(MN=MP\)(gt)

      \(\widehat{MNH}=\widehat{MPH}\)(gt)

      \(NH=PH\)(gt)

suy ra:   \(\Delta MNH=\Delta MPH\)(c.g.c)

b)   \(\Delta MNH=\Delta MPH\)

\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}\)

mà    \(\widehat{MHN}+\widehat{MHP}=180^0\)(kề bù)

\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}=90^0\)

\(\Rightarrow\)\(MH\)\(\perp\)\(NP\)

Nguyễn Thị Ngọc Linh
7 tháng 2 2018 lúc 21:10

a,  Xét tam giác MNH và tam giác MPH có

    MN=MP(gt)

    NH=PH(gt)

    MH chung

=> tam giác MNH=tam giác MPH (c.c.c)

b, Từ a : tam giác MNH = tam giác MPH => góc MHN =góc MHP

Mà góc MHN+góc MHP=180 độ (kề bù)=> Góc MNH=góc MHP =180:2=90 độ 

=> MH vuông góc với NP

Thao Vu Phuong
7 tháng 2 2018 lúc 21:32

Ai giúp mình câu f được không?

Nguyễn Trần Như Kim
Xem chi tiết
Nguyễn Trần Như Kim
1 tháng 4 2021 lúc 20:11

giúp mình nhanh ạ mai thi rồi  

Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 21:17

a) Xét ΔMNH và ΔMPH có 

MN=MP(ΔMNP cân tại M)

\(\widehat{NMH}=\widehat{PMH}\)(MH là tia phân giác của \(\widehat{NMP}\))

MH chung

Do đó: ΔMNH=ΔMPH(c-g-c)

Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 21:19

b) Xét ΔMNP có G là trọng tâm của ΔMNP(gt)

nên MG là đường trung tuyến ứng với cạnh NP(Định lí)

Ta có: ΔMNH=ΔMPH(cmt)

nên NH=PH(Hai cạnh tương ứng)

mà N,H,P thẳng hàng(gt)

nên H là trung điểm của NP

Suy ra: MH là đường trung tuyến ứng với cạnh NP trong ΔMNP

mà MG là đường trung tuyến ứng với cạnh NP(cmt)

và MH và MG có điểm chung là M

nên M,G,H thẳng hàng(đpcm)

Phạm Khánh ngọc
Xem chi tiết
Nga Nguyen
28 tháng 3 2022 lúc 15:16

có M

Linh Nguyễn
28 tháng 3 2022 lúc 15:16

chưa hỉu cái đề lắm

Nguyễn Khánh Linh
28 tháng 3 2022 lúc 15:17

...????

Nhok Ken
Xem chi tiết
Nhok Ken
26 tháng 4 2015 lúc 20:09

Vân đề la cau d do nha cac pn

 

Kay Lmt
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 8:40

a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có

NQ chung

\(\widehat{MNQ}=\widehat{HNQ}\)

Do đó: ΔMNQ=ΔHNQ

b: ta có: ΔMNQ=ΔHNQ

nên NM=NH

hay ΔNHM cân tại N 

mà \(\widehat{MNH}=60^0\)

nên ΔNHM đều

Nguyễn Văn Quang
Xem chi tiết
Mai Anh Khuất Thị
Xem chi tiết
Mai Anh Khuất Thị
Xem chi tiết
Lê Thu Hà
Xem chi tiết
Linh Thuy
9 tháng 4 2017 lúc 20:35

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

Vic Lu
9 tháng 4 2017 lúc 20:43

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)