cho tam giác ABC cân có AB=AC=5cm, BC=6cm, M là trung điểm của BC a, so sánh số đo góc của tam giác ABC
b, chứng minh tam giác AMB=tam giác AMC
c, chứng minh AM=BC
d, so sánh AB=AM
cho tam giác ABC có AB=AC=5cm BC=6cm. M là trung điểm của BC
kẽ MD vuông góc vói AB tại D ME vuongong vói AC tại E chứng minh tam giác Med cân
Cho tam giác ABC ( cân tại A ) có AB=AC=5cm; BC=6cm. Kẻ AH vuông góc BC(H thuộc BC)
a) Chứng minh tam giác ABH = tam giác ACH
b) Chứng minh H là trung điểm của BC
c) Tính AH
a, Xét tam giác ABH và tam giác ACH ta có
AB = AC (gt)
AH _ chung
^AHB = ^AHC = 900
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam giác ABC cân tại A
AH là đường cao đồng thời là đường trung tuyến
=> H là trung điểm BC
c, Do H là trung điểm BC => HB = 6/2 = 3 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\)
cho tam giác ABC cân tại A , có AB = 5cm , BC = 6cm . Gọi M, O lần lượt là trung điểm của BC và AC . Gọi N là điểm đối xứng vs M qua O a. Tính diện tích tam giác ABC b. Tứ giác AMCN là hình gì , vì sao c. Tam giác ABC có thêm đk gì thì tứ giác AMCN là hình vuông
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A
Cho tam giác ABC có AB=AC=5cm, BC=6cm. Đường trung tuyến AM.
a, Cm: tam giác AMB= tam giác AMC
b, Tính độ dài trung tuyến AM.
c, Gọi H là trung điểm của AM. Cm: tam giác BHC là tam giác cân
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: BM=CM=3cm
=>AM=4cm
c: Xét ΔHBC có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHBC cân tại H
cho tam giác cân ABC (A nhọn ) tia phân giác góc A cắt BC tại I
cm AI vuong goc voi BC
gọi D là trung điểm của AC ,M là giao điểm của BD với AI .cm M là trọng tâm của tam giác ABC
------------Biết AB =AC=5cm,BC=6cm tính góc ABM
Cho ΔABC cân tại A có AB = 5cm; BC = 6cm. Kẻ phân giác trong AM (M ∈ BC) . Gọi O là trung điểm của AC và K là điểm đối xứng của M qua O.
a) Tính diện tích tam giác ABC.
b) Tứ giác ABMO là hình gì? Vì sao?
c) Để tứ giác AMCK là hình vuông thì tam giác ABC phải có thêm điều kiện gì?
a) Vì M là trung điểm của BC nên:
BM = BC/2 = 6/2 = 3(cm)
Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.
Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)
= 52 - 32 = 16(cm)
Suy ra AM = 4cm
b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.
Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)
Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)
Suy ra ∠OMA = ∠MAB
Mà đây là 2 góc ở vị trí so le trong
Suy ra OM // AB
Vậy tứ giác ABMO là hình thang.
c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.
Hình chữ nhật AMCK là hình vuông
⇔ AM = MC = BM
⇔ AM = BC/2
⇔ ΔABC vuông cân tại A.
cho tam giác abc cân tại a có m trung điểm bc tia phân giác của góc bam cắt bm tại i gọi h và k lần lượt là hình chiếu của i trên ab và ac o giao điểm ik và am
a. Cho ab=5cm bc=6cm tính ah
b. CM mh//oc
Cho tam giác ABC cân tại A. Biết AC=5cm, BC=6cm. Kẻ AH vuông góc với BC tại H a) CMR: Tam giác ABH=tam giác ACH. b) Tính độ dài đoạn thẳng AH c) Từ H kẻ đường thẳng song song với AC, cắt AB tại M. CMR: M là trung điểm của AB
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
b: BH=CH=BC/2=3cm
=>AH=4(cm)
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
Do đó: M là trung điểm của AB
Cho tam giác ABC cân tại A, góc A nhọn. Tia phân giác góc A cắt BC tại I.
a) Chứng minh: AI vuông góc BC
b) Gọi D là trung điểm AC, M là giao điểm của BD và AI. Chứng minh rằng: M là trọng tâm của tam giác ABC.
c) Biết AB=AC=5cm, BC=6cm. Tính AM?