Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
5g lớp
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 11:05

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABD vuông tại D và ΔCAD vuông tại  D có

góc DBA=góc DAC

=>ΔABD đồng dạng với ΔCAD

b: góc EAF+góc EDF=180 độ

=>AFDE nội tiếp

=>góc AFD+góc AED=180 độ

=>góc AFD=góc CED

Nguyễn Minh Quân
Xem chi tiết
Dark_Hole
20 tháng 2 2022 lúc 10:22

Xét tam giác ABC vuông có

\(AB^2+AC^2=BC^=>BC^2=100=>BC=10\) (cm)

Xét 2 tam giác ADB và ADC có

\(ADB=ADC=90\)độ

\(ABD=ACD=90:2=45\)độ

=>Đồng dạng theo trường hợp gg

=>\(BD=DC=BC/2=10/2=5\)

=>Xét tam giác ADB vuông có

\(AD^2+BD^2=AB^2=>AD^2=11=>AD=căn11\)

Chúc em học giỏi

~Tiểu Hoa Hoa~
Xem chi tiết
Ngọc Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 2 2022 lúc 15:30

1: Xét ΔABC có BD là đường phân giác

nên AD/CD=AB/BC=3/5

2: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có 

\(\widehat{C}\) chung

do đó: ΔCHD∼ΔCAB

Suy ra: HD/AB=CD/CB

hay \(CD\cdot AB=HD\cdot CB\)

Duy Hung
Xem chi tiết

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

\(\widehat{ACB}\) chung

Do đó: ΔHAC~ΔABC

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{5}=\dfrac{CD}{13}\)

mà AD+CD=AC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{5}=\dfrac{CD}{13}=\dfrac{AD+CD}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)

=>\(AD=5\cdot\dfrac{2}{3}=\dfrac{10}{3};CD=13\cdot\dfrac{2}{3}=\dfrac{26}{3}\)

c: Xét ΔBAH có BI là phân giác

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc ABH chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

=>\(IH\cdot DC=DA\cdot IA\)

MaiLinh
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 16:40

\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)

\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)

\(d,\) Vì AD là p/g góc A

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)

Mà \(BD+DC=BC=10\)

\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)

 

TRUNG LÊ
Xem chi tiết
Pánh pò
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 0:24

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

BH=6^2/10=3,6cm

HC=10-3,6=6,4cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm

Hieu Ngoc Nguyen
Xem chi tiết
Huỳnh Thị Thanh Ngân
12 tháng 7 2021 lúc 8:59

cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại  nói tính AD

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 14:16

Sửa đề: AB=6cm

b) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

hay \(AB^2=BH\cdot BC\)

c) Xét ΔABI và ΔCBD có

\(\widehat{ABI}=\widehat{CBD}\)(BI là tia phân giác)

\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔABI\(\sim\)ΔCBD(g-g)

d) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất tia phân giác của tam giác)(2)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nen \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

hay \(IH\cdot DC=IA\cdot AD\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 14:17

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}DE=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Phương Nguyễn 2k7
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:16

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 21:55

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{HBA}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 21:56

c) Ta có: ΔABC\(\sim\)ΔHBA(cmt)

nên \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)