cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại nói tính AD
Sửa đề: AB=6cm
b) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(1)
hay \(AB^2=BH\cdot BC\)
c) Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)(BI là tia phân giác)
\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔABI\(\sim\)ΔCBD(g-g)
d) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất tia phân giác của tam giác)(2)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nen \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
hay \(IH\cdot DC=IA\cdot AD\)
a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}DE=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)