Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hieu Ngoc Nguyen

Cho tam giác ABC vuông tại A có AD=6cm,AC=8cm,đường cao AH và đường phân giác BD cắt AH tại I

a) Tính AD,DC

b) Chứng minh AB^2=BH.BC

c) Chứng minh tam giác ABI đồng dạng tam giác CBD

d) Chứng minh IH.DC=IA.AD

Huỳnh Thị Thanh Ngân
12 tháng 7 2021 lúc 8:59

cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại  nói tính AD

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 14:16

Sửa đề: AB=6cm

b) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

hay \(AB^2=BH\cdot BC\)

c) Xét ΔABI và ΔCBD có

\(\widehat{ABI}=\widehat{CBD}\)(BI là tia phân giác)

\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔABI\(\sim\)ΔCBD(g-g)

d) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất tia phân giác của tam giác)(2)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nen \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

hay \(IH\cdot DC=IA\cdot AD\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 14:17

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}DE=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Hoàng Phú Lợi
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Hằng Vu
Xem chi tiết
JOKER NO LOVE
Xem chi tiết
Duy Hung
Xem chi tiết
quách anh thư
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
Dieuhuyen
Xem chi tiết
Lê Đức Thắng
Xem chi tiết