Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DanAlex
Xem chi tiết
Nguyễn Gia Triệu
25 tháng 4 2018 lúc 7:55

\(\Leftrightarrow2x^4-2x^3-x^2+1\ge0\)

\(\Leftrightarrow2x^3\left(x-1\right)-\left(x+1\right)\left(x-1\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^3-x-1\right)\ge0\)

Tớ làm tới đây rùi, bạn tự làm tiếp nha

Mi Dao
Xem chi tiết
Thanh Tùng DZ
1 tháng 5 2020 lúc 20:06

Ta có :

2x4 + 1 - 2x3 - x2 

= 2x3 ( x - 1 ) - ( x - 1 ) ( x + 1 )

= ( x - 1 ) ( 2x3 - x - 1 )

= ( x - 1 ) [ ( x3 - x ) + ( x3 - 1 ) ]

= ( x - 1 ) [ x ( x - 1 ) ( x + 1 ) + ( x - 1 ) ( x2 + x + 1 ) ]

= ( x - 1 )2 ( x2 + x + x2 + x + 1 )

= ( x - 1 )2 ( 2x2 + 2x + 1 )

= ( x - 1 )2 ( x2  + ( x + 1 )2 ) \(\ge\)0

Suy ra đpcm

Khách vãng lai đã xóa
ngtt
Xem chi tiết
Toru
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Ahwi
Xem chi tiết
Ahwi
1 tháng 3 2018 lúc 13:45

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

mê zai đẹp
1 tháng 3 2018 lúc 13:46

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

alibaba nguyễn
1 tháng 3 2018 lúc 13:47

1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)

\(=-11-\left(3x-2\right)^2\le-11< 0\)

Câu b và câu 2 tương tự

Lan Anh Nguyễn
Xem chi tiết
Khôi Bùi
18 tháng 5 2021 lúc 11:03

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

Trần Ái Linh
18 tháng 5 2021 lúc 11:03

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

😈tử thần😈
18 tháng 5 2021 lúc 11:04

x4+2x2+1 =(x2+1)2 mà (x2+1)2 ≥ 0 vs mọi x

Dung Dung
Xem chi tiết
Dương Lam Hàng
7 tháng 3 2019 lúc 10:32

Ta có: \(P=\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)

                                                                                                                   \(=\frac{\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Vì \(\hept{\begin{cases}x^2+1\ge1>0\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)

Nên mẫu số luôn luôn khác 0

Do đó: \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\) nên \(P\ge0\left(\forall x\right)\)

Tran Le Khanh Linh
12 tháng 5 2020 lúc 4:59

\(P=\frac{x^4+x^2+x+1}{x^4-x^2+2x^2-x+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Do \(\left(x^2+1\right)\left(x^2-x+1\right)\ne0\)do đó không cần điều kiện của x

Vậy \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\x^2+1>0\forall x\end{cases}\Rightarrow P\ge0\forall x}\)

Khách vãng lai đã xóa
Đỗ Linh Chi
Xem chi tiết
Trịnh Thành Công
5 tháng 12 2016 lúc 11:03

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

Trịnh Thành Công
5 tháng 12 2016 lúc 11:05

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

Đỗ Linh Chi
5 tháng 12 2016 lúc 11:13

bạn làm luôn caai c đc không mkk sẽ tích cho bạn 

minh anh
Xem chi tiết
nguyễn thị huyền trang
27 tháng 5 2016 lúc 17:26

a) kết quả là x^2-2x+3

b) CM NÈ:

X^2-2X+3=(X^2-2X+1)+2=(X-1)^2+2

VÌ (X-1)^2>=0 VỚI MỌI X=>(X-1)^2+2>0 VỚI MỌI x=> GIÁ TRỊ BIỂU THỨC LUÔN DƯƠNG

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2018 lúc 17:27

Điều kiện x ≠ 1 và x  ≠  - 1

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Biểu thức dương khi x 2 + 2 x + 3 > 0

Ta có:  x 2 + 2 x + 3  =  x 2 + 2 x + 1 + 2  = x + 1 2 + 2 > 0 với mọi giá trị của x.

Vậy giá trị của biểu thức dương với mọi giá trị x  ≠  1 và x  ≠  - 1