Tìm nghiệm của đa thức f(x)=5x\(^2\)-2x
a(x)=x^3+5x^2-5x-2x^2+10x-18 b(x)=-x^3-5x^2+3x+2x^2-x-2 a)thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến b)tìm đa thức m(x) sao cho m(x)-A(x)=B(x) c)tìm nghiệm của đa thức m(x)
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
tìm nghiệm của đa thức f(x)=x^3-2x^2-x+2
f(x) = 0 => x3 - 2x2 - x + 2 = 0
=> x2. (x - 2) - (x - 2) = 0
=> (x2 - 1).(x - 2) = 0 => x2 - 1 = 0 hoặc x - 2 = 0
+) x2 - 1 = 0 => x = 1 hoặc x = -1
+) x - 2 = 0 => x = 2
Vậy đa thức có 3 nghiệm là: -1;1;2
tìm nghiệm của đa thức f(x)=-x^3-2x^2-x+3
H(x) = 2x^3 + 5x + 15. tìm nghiệm của đa thức trên
tìm 1 nghiệm của đa thức:
P(x)=2x3+4x2-5x-1
\(P\left(x\right)=2x^3+4x^2-5x-1=0\)
<=> \(2x^3-2x^2+6x^2-6x+x-1=0\)
<=> \(2x^2\left(x-1\right)+6x\left(x-1\right)+x-1=0\)
<=> \(\left(x-1\right)\left(2x^2+6x+1\right)=0\)
<=> \(x-1=0\) (do 2x2 + 6x + 1 khác 0)
<=> \(x=1\)
Vậy....
\(P\left(x\right)=2x^3+4x^2-5x-1\)
\(P\left(x\right)=2x^3-2x^2+6x^2-6x+x-1\)
\(P\left(x\right)=2x^2\left(x-1\right)-6x\left(x-1\right)+\left(x-1\right)\)
\(P\left(x\right)=\left(x-1\right)\left(2x^2-6x+1\right)\)
Để P(x) có nghiệm \(\Rightarrow x-1=0\Leftrightarrow x=1\)
Vậy x = 1 là 1 nghiệm của P(x)
Cho đa thức f(x=-2+x^4+2x^2+3x^3+4x^4+5x^4+3x^3+3
Chứng minh rằng đa thức f(x) không có nghiệm tại mọi giá trị của x
tìm nghiệm của đa thức:
H=x2-5x-6
x2-5x-6
=x2+x-6x-6
=x(x+1)-6(x+1)
=(x-6)(x+1)
=> nghiệm là 6 hoặc -1
Bài 1: tìm x biết:
a)(x-8 ).( x3+8)=0
b)( 4x-3)-( x+5)=3.(10-x )
bài 2: cho hai đa thức sau:
f( x)=( x-1).(x+2 )
g(x)=x3+ax2+bx+2
Xác định a và b biết nghiệm của đa thức f(x)cũng là nghiệm của đa thức g(x)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
Bài 2:
$f(x)=(x-1)(x+2)=0$
$\Leftrightarrow x-1=0$ hoặc $x+2=0$
$\Leftrightarrow x=1$ hoặc $x=-2$
Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$
Tức là:
$g(1)=g(-2)=0$
$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$
$\Rightarrow a=0; b=-3$
Tìm nghiệm của các đa thức sau :
X.(2X+2)
tìm nghiệm của đa thức : x2 - 2x = 0
Để đa thức có nghiệm thì \(x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
=.= hk tốt!!
Ta có:\(x^2-2x=0\)(1)
\(\Leftrightarrow\)\(x\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy PT (1) có tập nghiệm là S = { 0 ; 2 }.