Cho x và y thỏa điều kiện x+y=1.
Chứng minh rằng: x2+y2 ≥ \(\frac{1}{2}\)
HELP ME. THANKS SO MUCH. MOAZZ
1) Với ba số dường x, y, z thỏa mãn x + y + z = 1, chứng minh \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+zx}+\frac{1-z^2}{z+xy}\ge6\)
2) Cho các số thực a, b, c thỏa mãn điều kiện a \(\ge\) 3, ab \(\ge\) 6, abc \(\ge\) 6. Chứng minh rằng: \(a^2+b^2+c^2\ge14\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
1) Bài này có 2 cách giải
Cách 1:
để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)
ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)
trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:
\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)
Do đó sử dụng BĐT AM-GM ta có:
\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)
Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)
Cách 2:
Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:
\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)
Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)
tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)
Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được
\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)
\(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)
1) Với ba số dường x, y, z thỏa mãn x + y + z = 1, chứng minh \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+zx}+\frac{1-z^2}{z+xy}\ge6\)
2) Cho các số thực a, b, c thỏa mãn điều kiện a \(\ge\) 3, ab \(\ge\) 6, abc \(\ge\) 6. Chứng minh rằng: \(a^2+b^2+c^2\ge14\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
cho x, y là các số nguyên dương thỏa mãn \(\frac{x^2-1}{2}=\frac{y^2-1}{3}\) .chứng minh rằng x2 -y2 chia hết cho 40
Giả thiết đã cho có thể viết lại được thành 3x2-2y2=1(1)
Từ đây, ta có x lẻ nên x2chia 8 dư 1 => 3x2 chia 8 dư 3
Từ đo ta có 2y2 chia 8 dư 2
=> y2 chia 8 dư 1. Do đó: x2-y2 chia 8 (2)
Tiếp theo ta sẽ chứng minh x2-y2chia hết cho 5 (3)
Chú ý rằng số dư của a2 (a thuộc Z) khi chia cho 5 là 0;1 và 4
Nếu y2 chia 5 thì từ (1) ta có 3x2 chia 5 dư 1, mâu thuẫn do só dư của 3x2 khi chia 5 chỉ có thể là 0;3;2Nếu y2 chia 5 dư 4 thì từ (1) ta có 3x2 chia 5 dư 4, mâu thuẫnDo đó ta phải có y2 chia 5 dư 1. Khi đó từ (1) ta cũng suy ra x2 chia 5 dư 1. Dẫn đến x2-y2 chia hết cho 5Từ (2) và (3) với chú ý (5;8)=1 ta thu được x2-y2 chia hết cho 40 (đpcm)
Cho hai số dương x, y thỏa mãn điều kiện: x + y = 2
Chứng minh: x2y2 ( x2 + y2) 2
Với x, y là hai số dương, dễ dàng chứng minh x + y 2,
do x + y = 2 => 0 < xy ≤ 1 (1)
Ta lại có: 2xy( x2 + y2) ≤
=> 0 < 2xy(x2 + y2) ≤ (x+y)4/4 = 4
=> 0 < xy( x2 + y2) ≤ 2 (2)
Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)
Dấu “=” xảy ra khi x = y = 1
nếu như bn bik câu trả lời thì bn hỏi lm chi
Mình k hiểu hàng số4 á
Ai chỉ lại giúp mình với
cho x,y thỏa mản điều kiện 4x^2+y^2=5xy.
chứng minh rằng: nếu 4x>y thì 2x>y>0 .....hết...
help me... cần gấppp
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
cho 2 số x, y thỏa mãn điều kiện x+y=1
Chứng minh rằng:
\(\left(1+\frac{1}{x}\right).\left(1+\frac{1}{y}\right)\ge9\)
VT = 1 + \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{xy}\)
= 1 + \(\frac{y}{xy}\)+ \(\frac{x}{xy}\)+ \(\frac{1}{xy}\)
= 1 + \(\frac{x+y+1}{xy}\)
= 1 + \(\frac{1+1}{xy}\)
= 1 + \(\frac{2}{xy}\)
= \(\frac{xy+1}{xy}\)= 1 +\(\frac{1}{xy}\)
>hoặc= 9
\(\text{Cho các số thực dương x, y, z thỏa mãn: x2+y2+z2=1 CMR: (x−1)+(y−2)2+(z−3)4≥88 }\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
thanks người giúp
Cho x, y, z là các số thực dương thỏa mãn xyz = 1. Chứng minh rằng
\(\frac{1-x}{x+2}+\frac{1-y}{y+2}+\frac{1-z}{z+2}\le0\)
Help me!