Tìm nghiệm đa thức sau :
C(x) = \(\left(x-1\right)^2-\frac{2}{3}\left(x-1\right)\)
Tìm nghiệm đa thức sau :
C(x) = \(\left(x-1\right)^2-\frac{2}{3}\left(x-1\right)\)
\(C\left(x\right)=\left(x-1\right)\left(x-1\right)-\frac{2}{3}\left(x-1\right)=\left(x-1\right)\left(x-1-\frac{2}{3}\right)=\left(x-1\right)\left(x-\frac{5}{3}\right)\)
Nghiệm của đa thức là: 1; 5/3
Bài 1 : Cho \(f\left(x\right)=x^3-2ax+b\). Tìm a,b biết đa thức có hai nghiệm là f(1)=-1 và f(0)=2
Bài 2 . Cho \(f\left(x\right)=x^3-2ax+b\). TÌm a,b biết đa thức có hai nghiệm là 0 và 3
Tìm nghiệm của đa thức sau :
\(A\left(x\right)=\left(x-2x^2\right)\left(15x^2+7\right)\)
\(A\left(x\right)=\left(x-2x^2\right)\left(15x^2+7\right)\)
\(A\left(x\right)=0\)\(\Leftrightarrow\left(x-2x^2\right)\left(15x^2+7\right)=0\)
\(\Leftrightarrow x-2x^2=0\Leftrightarrow x\left(1-2x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-2x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Hoặc \(\Leftrightarrow15x^2+7=0\Leftrightarrow15x^2=-7\Leftrightarrow x^2=\frac{-7}{15}\)(vô lí)
Vậy \(x=0,x=\frac{1}{2}\)là 2 nghiệm của \(A\left(x\right)\)
\(\left(x-2x^2\right)\left(15x^2+7\right)=0\)
Với \(x-2x^2=0\)
\(\Rightarrow x=2x^2\Rightarrow2x=1\)
\(x=\frac{1}{2}\)
Với \(15x^2+7=0\Rightarrow15x^2=-7\)
\(x^2=-\frac{7}{15}\)vô lý)
Vậy nghiệm của đa thứ A(x) là \(x=\frac{1}{2}\)
\(A\left(x\right)=\left(x-2x^2\right).\left(15x^2+7\right)=0\)
Mà \(15x^2+7>0\)
\(\Rightarrow x-2x^2=0\Rightarrow x^2=\frac{x}{2}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Câu 1. Cho hai đa thức :
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x.\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.
b) Tính P(x) + Q(x) và P(x) - Q(x)
c) Chứng tỏ rằng x=0 là nghiệm của đa thức P(x) nhưng không phải là nghiệm của đa thức Q(x).
Câu 2. Cho đa thức:
\(M\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3.\)
a) Sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biến.
b) Tính M(1) và M(-1).
c) Chứng tỏ rằng đa thức trên không có nghiệm.
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Tìm nghiệm các đa thức sau :
a) \(H\left(x\right)=3x^2+2x+2012\)
b) \(D\left(x\right)=x^2+4x+4\)
c) \(F\left(x\right)=x^3-2x^2-2x+4\)
a) \(H\left(x\right)=3x^2+2x+2012=3\left(x^2+\frac{2}{3}x+\frac{2012}{3}\right)\)
\(=3\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}+\frac{2012}{3}\right)\)
\(=3\left[\left(x+\frac{1}{3}\right)^2+\frac{6035}{9}\right]=3\left(x+\frac{1}{3}\right)^2+\frac{6035}{3}\ge\frac{6035}{3}>0\forall x\)
Vậy đa thức vô nghiệm
b) \(D\left(x\right)=x^2+4x+4=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Nghiệm của đa thức là -2
c)\(F\left(x\right)=x^3-2x^2-2x+4=0\)
\(\Leftrightarrow x^2\left(x-2\right)-2\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2-2=0\left(1\right)\end{cases}}\).Xét đa thức (1): \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy...
a, Vô nghiệm
b, Nghiệm là x = -2
Học tốt
Tìm nghiệm của đa thức:
\(h\left(x\right)=x^3+3x^2+3x+1\)
( p/s: ko làm ra hđt luôn)
Đa thức \(h\left(x\right)=x^3+3x^2+3x+1.\)có nghiệm
\(\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow x^2.\left(1+3x\right)+\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right).\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x^2+1=0\left(ktm\right)\end{cases}\Rightarrow x=-\frac{1}{3}}\)
Vậy .........
Ta có: \(h\left(x\right)=0\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(x+1\right)=0\)
\(\Leftrightarrow x^2.\left(x+1\right)+2x.\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1\right).\left(x+1\right)=0\)
\(\Leftrightarrow\left[\left(x^2+x\right)+\left(x+1\right)\right].\left(x+1\right)=0\)
\(\Leftrightarrow\left[x.\left(x+1\right)+\left(x+1\right)\right].\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right).\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy...
sorry nhìn nhầm
Đa thức h(x) có nghiệm
<=> x3+3x2+3x+1=0
<=> x3+2x2+x2+2x+x+1=0
<=> x2.(x+1)+2x.(x+1)+(x+1)=0
<=>(x+1).(x2+2x+1)=0
<=> (x+1)3=0
<=> x+1=0
<=> x=-1
Vậy............
Tìm giá trị của a để phương trình sau chỉ có 1 nghiệm:
\(\frac{x+6a+3}{x+a+1}=\frac{-5a\left(2a+3\right)}{\left(x-a\right)\left(x+a+1\right)}\)
Câu 1 :
Phân tích đa thức thành nhân tử
A = \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Câu 2 :Tìm dư trong phép chia đa thức
f ( x ) =\(x^{1994}+x^{1993}+1\) cho \(x^2\)+x + 1 .
x1994+x1993+1:x2+x+1
=(x1994+x1993:x2+x)+1
=x996+1
vậy dư là x996+1
chắc zậy
Câu 1 tự lm.
Câu 2:
Ta có: \(f\left(x\right)=x^{1994}+x^{1993}+1\)
= \(\left(x^{1994}-x^2\right)+\left(x^{1993}-x\right)+\left(x^2+x+1\right)\)
= \(x^2\left(x^{1992}-1\right)+x\left(x^{1992}-1\right)+\left(x^2+x+1\right)\)
= \(\left[\left(x^3\right)^{664}-\left(1^3\right)^{664}\right]\left(x^2+x\right)+\left(x^2+x+1\right)\)
= \(\left(x^3-1^3\right)\left(x^{1989}+x^{1986}+...+x^3+1\right)+\left(x^2+x+1\right)\)
= \(\left(x-1\right)\left(x^2+x+1\right)\left(x^{1989}+x^{1986}+..+1\right)+\left(x^2+x+1\right)\)
= \(\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^{1989}+..+1\right)+1\right]\)
Vì \(x^2+x+1\) \(⋮\) \(x^2+x+1\)
=> \(f\left(x\right)\) \(⋮\) \(x^2+x+1\) hay số dư trong phép chia là 0
Tìm đa thức bậc 2 sao cho: \(f_{\left(x\right)}-f_{\left(x-1\right)}=x\)
áp dụng tính tổng: S = 1 + 2 + 3 +...+ n