a+b+c=3, a=0
tìm giá trị nhỏ nhất của b,c (b,c là số nguyên dương)
cho a,b,c>0
tìm giá trị nhỏ nhất của A\(=\dfrac{a+b+c}{a+\sqrt{ab}+\sqrt[3]{abc}}\)
\(A=\dfrac{a+b+c}{a+\sqrt{\dfrac{a}{2}.2b}+\sqrt[3]{\dfrac{a}{4}.b.4c}}\ge\dfrac{a+b+c}{a+\dfrac{1}{2}\left(\dfrac{a}{2}+2b\right)+\dfrac{1}{3}\left(\dfrac{a}{4}+b+4c\right)}=\dfrac{3}{4}\)
cho các số nguyên dương a,b,c thỏa mãn a^3 + b^3 + c^3 = 6(a + b + c). Tìm giá trị nhỏ nhất của tổng a + b+ c
Từ đề bài, a, b, c có giá trị là 1,2,3. Suy ra giá trị nhỏ nhất của tổng a+b+c= 1+2+3=6. Vậy giá trị nhỏ nhất của tổng a+b+c là 6.
Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f x = x - 6 x 2 + 4 trên đoạn [0;3] có dạng a - b c với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b+ c
A. S = 4
B. S = -2
C. S =-22
D. S = 5
Cho a,b,c là các số nguyên dương thỏa mãn a+b+c+d=99 tìm giá trị lớn nhất và nhỏ nhất của abcd
Bài này làm cũng dài nên nhường bạn khác
Cho a,b,c nguyên dương a^2=b^2+c^2 có hai số là số nguyên tố và hiệu của chúng là 50 .Tính giá trị nhỏ nhất của số còn lại
Cho a, b, c là các số nguyên dương. Tìm giá trị nhỏ nhất của biểu thức:
\(E=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
vì a,b,c dương => a+b khác 0
b+c khác 0
a+c khác 0
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(E=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
vậy E = \(\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự ta có: \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b;\) \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng 3 BĐT trên theo vế thì được:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)\(\Rightarrow E\ge\frac{3}{2}\).
Vậy \(Min\) \(E=\frac{3}{2}\). Đẳng thức xảy ra <=> a=b=c.
m và n là 2 số nguyên dương. Giá trị nhỏ nhất của số nguyên m nếu m/n = 0.3636363636...? A. 3 B. 4 C. 7 D. 13 E. 22
Cho các số thực dương x,y thỏa mãn x+2y+3xy=3 . Biết rằng biểu thức P= x+y đạt giá trị nhỏ nhất bằng \(\frac{a\sqrt{b}-c}{3}\)
trong đó a,b,c là các số nguyên dương . Gọi S là tập hợp các giá trị của M= a+b+c , tính tổng bình phương các phần tử của S
Ta có : \(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{3x+2}\) ( vì x > 0 )
Khi đó : \(x+y=x+\frac{3-x}{3x+2}=\frac{3x^2+x+3}{3x+2}=A\)
Chứng minh được : \(A\ge\frac{-3+2\sqrt{11}}{3}\) => ...
Cho a,b là các số nguyên dương thỏa mãn a+b+c=1.
Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c*a
AI LÀM NHANH NHẤT MÌNH LIKE NHÉ!