Cho biểu thức \(P=\left(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\right):\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)( Với a>b>0 )
Rút gọn biểu thức P và tìm giá trị nhỏ nhất của biểu thức này khi b=a-1
Cho biểu thức \(P=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
Rút gọn biểu thức P và tìm giá trị nhỏ nhất của biểu thức \(Q=2019+4P+13\sqrt{a}-6a+a\sqrt{a}\)
A = \(\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)( với x >0, \(x\ne1\))
a) Rút gọn các biểu thức a,b
b) Tìm các giá trị của x sao cho giá trị của biểu thức B nhỏ hơn giá trị của biểu thức A
\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)
\(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)
\(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)
\(=-3\)
\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b, Ta có \(B< A\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)
\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)
\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)
Vậy ...
Cho biểu thức:
\(P=\left(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\right).\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
Với a>b>1
a/ Rút gọn P
b/ Cho a-b=1. Tìm giá trị nhỏ nhất của P
Cho biểu thức \(P=\left(\dfrac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\dfrac{a-b}{\sqrt{a^2-b^2}-a+b}\right).\left(\dfrac{a^2+b^2}{\sqrt{a^2-b^2}}\right)\)với a>b>0
1) Rút gọn biểu thức P
2) Biết a-b=1. Tìm giá trị nhỏ nhất của P
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH VỚI TỐI MAI ĐI HC RỒI
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)
Cho biểu thức \(P=\left(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\right):\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)(Với a>b>0)
Rút gọn P và tìm GTNN của biểu thức này khi b=a-1
=(\(\frac{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}{\left(\sqrt{a+b}+\sqrt{a-b}\right)\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)+\(\frac{a-b}{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)
=(\(\frac{\sqrt{a^2-b^2}-\left(a-b\right)}{a+b-a+b}+\frac{\sqrt{a^2-b^2}+a-b}{a+b-a+b}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)
=\(\frac{2\sqrt{a^2-b^2}}{2b}\):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)
=\(\frac{\sqrt{a^2-b^2}}{b}\)*\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
=\(\frac{a^2+b^2}{b}\)
b/ Thế \(b=a-1\)thì ta có
\(P=\frac{a^2+\left(a-1\right)^2}{a-1}=\frac{2a^2-2a+1}{a-1}\)
\(\Leftrightarrow2a^2-\left(2+P\right)a+1+P=0\)
\(\Rightarrow\Delta_a=\left(2+P\right)^2-4.2.\left(1+P\right)\ge0\)
\(\Leftrightarrow P\ge2+2\sqrt{2}\)
Cho biểu thức D =\(\left(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{a}-b\sqrt{b}}{a-b}\right).\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{a\sqrt{a}-b\sqrt{b}}\) với \(a\ge0,b\ge0,a\ne b\)
1.Rút gọn biểu thức D
2.Tính giá trị của D khi \(a^2-5ab+4b^2\)
3.Tìm số thực k nhỏ nhất sao cho D<k với kiện xác định của bài toán
1) cho biểu thức P=\(\frac{\sqrt{a}+2}{\sqrt{a}+3-}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
a/ rút gọn P
b/ tìm giá trị của a để P<1
2) cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a/ rút gọn P
b/ tìm giá trị của P<0