Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen chien thang
Xem chi tiết
Nguyễn Mạnh Cường
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
25 tháng 6 2020 lúc 22:30

\(x^2-3y^2-2xy+10x+14y-18\)

\(=x^2-2xy+y^2-2x^2+10x-4y^2+14y-18\)

\(=x^2-2xy+y^2-2\left(x^2-5x+25\right)-4\left(y^2-\frac{7}{2}y+\frac{49}{16}\right)+\frac{177}{4}\)

\(=\left(x-y\right)^2-2\left(x-5\right)^2-4\left(y-\frac{7}{4}\right)^2+\frac{177}{4}\)

.....

Tuyển Nguyễn Đình
Xem chi tiết
Mysterious Person
31 tháng 8 2018 lúc 17:27

bài 4 : ta có : \(x+2y=3\Leftrightarrow x=3-2y\)

\(\Rightarrow E=x^2+2y^2=\left(3-2y\right)^2+2y^2=4y^2-12y+9+2y^2\)

\(=6y^2-12y+6+3=6\left(y-1\right)^2+3\ge3\)

\(\Rightarrow E_{max}=3\) khi \(x=y=1\)

bài 5 : ta có : \(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow2y^2-4y+2=-\left(x^2+2xy+y^2\right)+10\left(x+y\right)-16\)

\(\Leftrightarrow2\left(y-1\right)^2=-\left(x+y\right)^2+10\left(x+y\right)-16\ge0\)

\(\Leftrightarrow2\le x+y\le8\)

\(\Rightarrow P_{min}=2\) khi \(\left\{{}\begin{matrix}y=1\\x+y=2\end{matrix}\right.\Leftrightarrow x=y=1\)

\(\Rightarrow P_{max}=8\) khi \(\left\{{}\begin{matrix}y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

vậy ...........................................................................................................................

Đàm Tùng Vận
Xem chi tiết
Đàm Tùng Vận
7 tháng 12 2021 lúc 23:13

Giups mk vs ạ ai nhanh mk tick nha

Akai Haruma
8 tháng 12 2021 lúc 0:55

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$

 

Hoàng Tử Lớp Học
Xem chi tiết
alibaba nguyễn
20 tháng 11 2016 lúc 14:10

Làm nốt phần còn lại của bạn Thắng

(x + y - 5)2 + 2(y - 1)2 - 9 = 0

<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)

\(\Leftrightarrow\left(S-5\right)^2\le9\)

\(\Leftrightarrow-3\le S-5\le3\)

\(\Leftrightarrow2\le S\le8\)

Vậy GTNN là 2 đạt được khi x = y = 1

GTLN là 8 đạt được khi (x, y) = (7, 1)

Thắng Nguyễn
20 tháng 11 2016 lúc 10:14

\(x^2+3y^2+2xy-10x-14y+18\)

\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)

\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)

....

Hoàng Tử Lớp Học
20 tháng 11 2016 lúc 10:42

x=7;y=±1 và x=y=1 và x=1; y=3 và x=y=3 và x=5;y=-1

Hà Phạm Như Ý
Xem chi tiết
Uyên Phương
Xem chi tiết
_Guiltykamikk_
14 tháng 4 2018 lúc 12:11

Đặt  \(A=-x^2-3y^2-2xy+10x+14y-18\)

Ta có : \(-A=x^2+3y^2+2xy-10x-14y+18\)

\(-A=\left(x^2+2xy+y^2\right)+2y^2-10x-14y+18\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)\times5+25\right]+2y^2-4y+7\)

\(-A=\left(x+y-5\right)^2+2\left(y^2-2y+1\right)+5\)

\(-A=\left(x+y-5\right)^2+2\left(y-1\right)^2+5\)

Mà \(\left(x+y-5\right)^2\ge0\forall x;y\in R\)

\(\left(y-1\right)^2\ge0\forall y\in R\Rightarrow2\left(y-1\right)^2\ge0\forall y\in R\)

\(\Rightarrow-A\ge5\)

\(\Leftrightarrow A\le-5\)

Dấu " = " xảy ra khi:

\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Vậy Max A = - 5 khi ( x ; y ) = ( 4 ; 1 )

Nguyễn Thị Huyền Thương
Xem chi tiết
Phạm Hồng Ánh
Xem chi tiết