Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TFBOYS shuai tai
Xem chi tiết
Đinh Lan Phương
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 16:08

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

Đinh Lan Phương
17 tháng 7 2023 lúc 16:15

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

Nobody
Xem chi tiết
Sang Trần Tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 23:34

a: ĐKXĐ: x>=0; x<>1

\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)

d: căn x+2>=2

=>A<=1/2

Dấu = xảy ra khi x=0

Mai Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2023 lúc 0:24

\(M=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu = xảy ra khi x=0

kudo shinichi
Xem chi tiết

Em nên chèn bằng công thức nhé, chứ em viết thế này cô không hiểu đúng đề bài em cần được để trợ giúp em đâu

jeon kookie
Xem chi tiết
Thanh Tùng DZ
6 tháng 3 2020 lúc 17:21

Áp dụng BĐT Cô-si, ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge3\sqrt[3]{\frac{1}{\sqrt{xyz}}}\)

Mặt khác, ta có : \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=1\)

\(\Rightarrow P\ge3\)

Vậy GTNN của P là 3 khi x = y = z = 1

Khách vãng lai đã xóa
Nguyễn Ý Nhi
1 tháng 9 2021 lúc 9:35

Cách đơn giản hơn cách của anh Tùng:) sửa nốt là thực dương :V

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Xét bđt phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)với x,y,z > 0 ( cấy ni thì dễ rồi nhân 2 vào cả 2 vế chuyển vế là xong )

\(\Rightarrow P\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

Dấu "=" xảy ra <=> x=y=z=1

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
1 tháng 9 2021 lúc 18:53

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel kết hợp bất đẳng thức phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)ta có :

\(P\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

Dấu "=" xảy ra <=> x=y=z=1

Khách vãng lai đã xóa
Dũng Nguyễn tiến
Xem chi tiết
Dũng Nguyễn tiến
4 tháng 6 2021 lúc 10:03

/ kí hiệu là trên

 

Linh Linh
4 tháng 6 2021 lúc 10:47

undefined

Gia Bảo
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 11:06

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 11:02

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

Lấp La Lấp Lánh
17 tháng 9 2021 lúc 11:09

Bài 2:

a) \(\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(đk:x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{x-2}-5\sqrt{x-1}=7\)

\(\Leftrightarrow0=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

b) \(\sqrt{2x^2-3}=4\left(đk:-\sqrt{\dfrac{3}{2}}\ge x\ge\sqrt{\dfrac{3}{2}}\right)\)

\(\Leftrightarrow2x^2-3=16\)

\(\Leftrightarrow2x^2=19\Leftrightarrow x^2=\dfrac{19}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)