Chứng Minh
A=4(n2 - 1 ) n chia hết cho 4
Cho A=(n2+1)*(n2+4)
Chứng minh A với mọi n thuộc N
Tìm điều kiện n chứng minh A chia hết cho 120
A=n2+n+1, chứng minh A không chia hết cho 4 biết n∈Z
\(A=n^2+n+1=n\left(n+1\right)+1\)
Với \(n\inℤ\)thì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên chia hết cho \(2\).
Do đó \(n\left(n+1\right)\)là số chẵn nên \(A=n\left(n+1\right)+1\)là số lẻ.
Do đó \(A\)không chia hết cho \(4\).
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
a) Ta có n3 - n + 4
= n(n2 - 1) + 4
= (n - 1)n(n + 1) + 4
Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp)
mà 4 \(⋮̸\)3
=> n3 - n + 4 không chia hết cho 3
chứng minh
a) (n+3)^2 - (n+1)^2 chia hết cho 8 với mọi số tự nhiên n
b) (n+6)^2 - (n-6)^2 chia hết cho 24 với mọi số tự nhiên n
a) (n+3)\(^2\)- (n+1)\(^2\) = (n+3-n-1).(n+3+n+1) = 2(2n+4) = 4(n+2)
Sẽ ko chia hết cho 8 nếu n là số lẻ!
b) (n+6)\(^2\)- (n-6)\(^2\) = (n+6-n+6).(n+6+n-6) = 12.2n = 24n chia hết cho 6 với mọi n
Xin 1 like nha bạn. Thx bạn, chúc bạn học tốt
a) Cho A = 119 + 118 + 117 +…+11 + 1. Chứng minh rằng A ⋮ 5
b) Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 4.
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
a) chịu
b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)
Bài 1. Chứng minh
a, 10^ 2020 + 10^ 2021 + 10^ 2022 chia hết cho 222
b, 81^ 7 – 27^ 9 – 9^ 13 chia hết cho 45
c, 10^ 6 – 5 ^7 chia hết cho 59
d, 24^ 54 .54^ 24 .2^ 10 chia hết cho 72 ^63
e,3^ n+2 – 2^ n+2 + 3^ n – 2 ^n chia hết cho 10;
f, 3^ n+3 + 3^ n+1 + 2^ n+3 + 2^ n+2 chia hết cho 6
Bài 2.
a, Cho A = 1 + 2 + 2 ^2 + 2 ^3 + ...+ 2^ 99 . Chứng tỏ A chia hết cho 3; A chia 7 dư 1.
b, Cho B = 2 + 2^ 2 + 2^ 3 + ...+ 2^ 99 + 2^ 100 . Hỏi A có chia hết cho 6 không?
Bài 3. Cho A = 9^ 7 + 3^ 13 + 2. Hỏi A có chia hết cho 10 không?
Chứng minh:
a) 15 n + 15 n + 2 hết cho 113 với mọi số tự nhiên n;
b) n 4 – n 2 chia hết cho 4 với mọi số nguyên n.
a) Phân tích 15 n + 15 n + 2 = 113.2. 15 n .
b) Phân tích n 4 – n 2 = n 2 (n - 1)(n +1).
Tìm số tự nhiên n , sao cho :
a) n+4 chia hết cho n+1
b) n2+4chia hết cho n+2
c) 13n chia hết cho n-1
c) 13n⋮n-1
13n-13+13⋮n-1
13n-13⋮n-1 ⇒13⋮n-1
n-1∈Ư(13)
Ư(13)={1;-1;13;-13}
⇒n∈{2;0;14;-12}
b) Bạn tham khảo nha: https://olm.vn/hoi-dap/detail/99050878351.html
a: Ta có: \(n+4⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)
b: Ta có: \(n^2+4⋮n+2\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow n\in\left\{0;2;6\right\}\)
Chứng minh 3+....+100 chia hết cho 3
Chứng minh 1112111chia hết cho 1111
Chứng minhA=11...1(2001 chữ số 1)chia hết cho 3
Chứng minhB=11...1(2000 chữ số 1)chia hết cho 11