Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ba đứa làm CTV
Xem chi tiết
vũ tiền châu
6 tháng 1 2018 lúc 19:56

Áp Dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)

^_^

๖Fly༉Donutღღ
6 tháng 1 2018 lúc 20:00

Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)

\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)

+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)

\(\Rightarrow\)ĐPCM 

hên xui thôi -_-

CM BĐT phụ:  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng) 

Áp dụng BĐT trên ta có: 

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{9}{\left(x+y+z\right)^2}=9\)

Ngọc Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 5 2019 lúc 21:37

Áp dụng BĐT Cauchy-schwarz dạng engel,ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)

\(\Rightarrowđpcm\)

Lâm Thị Mai Hân
Xem chi tiết
ST
5 tháng 8 2018 lúc 14:04

Áp dụng BĐT Cosi dạng engel ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2xy+y^2+2zx+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\) (vì x+y+z=1)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

Nguyễn Gia Triệu
5 tháng 8 2018 lúc 14:46

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\)

                                                                  \(=\frac{9}{\left(x+y+z^2\right)}=\frac{9}{1}=9\)

Dấu "=" xảy ra khi x=y=z=1/3

Doraemon
31 tháng 8 2018 lúc 14:02

Áp dụng BĐT Cosi dạng engel, ta có:\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2xy+y^2+2zx+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)

(vì \(x+y+z=1\))

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vũ Thảo Vy
Xem chi tiết

Áp dụng bất đẳng thức Cauchy-Schwarz,ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{\left(x+y+z\right)^2}=\frac{9}{9}=1.\)(đpcm)

Thanh Tùng DZ
4 tháng 6 2019 lúc 21:09

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2xz+2yz}=\frac{9}{\left(x+y+z\right)^2}=1\)

( áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\))

Dấu "=" xảy ra khi x=y=z=1

cai j vay
Xem chi tiết
Kaya Renger
1 tháng 5 2018 lúc 21:49

Cauchy - Schwarz dạng Engel :

\(\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2zx}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}=9\)

Đẳng thức xảy ra <=> x = y = z = 1/3 

cai j vay
1 tháng 5 2018 lúc 22:02

cảm ơn nha

Nguyễn Anh Dũng An
Xem chi tiết
Đen đủi mất cái nik
11 tháng 1 2019 lúc 20:15

Áp  dụng bđt Svac ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)

hoang nguyen
25 tháng 8 2021 lúc 15:16

gg oaoa

Trang
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 8 2020 lúc 21:50

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Hải Linh Phan Hải
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết