a,(x/2x-2)+(x^2+1/2-2x^2)
b, (x/x-3)+(9-6x/x^2-3x)
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Bài 1 : Tìm thương Q và dư R sao cho A= B.Q+R biết ;
a) A = \(x^4+3x^3+2x^2-x-4\) và B = \(x^2-2x+3\)
b) A = \(2x^3-3x^2+6x-4\) và B = \(x^2-x+3\)
c) A = \(2x^4+x^3+3x^2+4x+9\) và B = \(x^2+1\)
d) A = \(2x^3-11x^2+19x-6\) và B = \(x^2-3x+1\)
c) A= \(2x^4-x^3-x^2-x+1\) và B = \(x^2+1\)
a)4/x+2+2/x-2+5x-6/4-x2 ; b)1-3x/2x+3x-2/2x-1+3x-2/2x-4x2 ; c)1/x2+6x+9+1/6x-x2-9+x/x2-9
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
Tìm x
a.(x+2).(x+3)-(x-2).(x+5) = 0
b. (2x+3).(x-4)+(x-5)(x+2) = (3x-5)(x-4)
c. (3x+2)(2x+9)-(x+2)(6x+1) = x+1-(x-6)
d. 3( 2x-1).(3x-1)-(2x-3).(9x-1)=0
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
P)(9-x)(x^2+2x-3) n)(-x+3)(x^2+x+1) O)(-6x+1/2)(x^2-4x+2) q)(6x+1)(x^2-2x-3) r)(2x+1)(-x^2-3x+1) U)(2x-3)(-x^2+x+6) s)(-4x+5)(x^2+3x-2) V)(-1/2x+3)(2x+6-4x^3)
p) \(\left(9-x\right)\left(x^2+2x-3\right)\)
\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)
\(=9x^2+18x-27-x^3-2x^2+3x\)
\(=-x^3+7x^2+21x-27\)
n) \(\left(-x+3\right)\left(x^2+x+1\right)\)
\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=-x^3-x^2-x+3x^2+3x+3\)
\(=-x^2+2x^2+2x+3\)
o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)
\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)
\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)
\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)
q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)
\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=6x^3-12x^2-18x+x^2-2x-3\)
\(=6x^3-11x^2-20x-3\)
r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)
\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)
\(=-2x^3-6x^2+2x-x^2-3x+1\)
\(=-2x^3-7x^2-x+1\)
u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)
\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)
\(=-2x^3+2x^2+12x+3x^2-3x-18\)
\(=-2x^3+5x^2+9x-18\)
s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)
\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)
\(=-4x^3-12x^2+8x+5x^2+15x-10\)
\(=-4x^3-7x^2+23x-10\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)
\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)
\(=-x^2-3+2x^4+6x+18-12x^3\)
\(=2x^4-12x^3-x^2+6x+15\)
p: (-x+9)(x^2+2x-3)
=-x^3-2x^2+3x+9x^2+18x-27
=-x^3+7x^2+21x-27
n: (-x+3)(x^2+x+1)
=-x^3-x^2-x+3x^2+3x+3
=-x^3+2x^2+2x+3
o: (-6x+1/2)(x^2-4x+2)
=-6x^3+24x^2-12x+1/2x^2-2x+1
=-64x^3+49/2x^2-14x+1
q: (6x+1)(x^2-2x-3)
=6x^3-12x^2-18x+x^2-2x-3
=6x^3-11x^2-20x-3
r: (2x+1)(-x^2-3x+1)
=-2x^3-6x^2+2x-x^2-3x+1
=-2x^3-7x^2-x+1
u: =-2x^3+2x^2+12x+3x^2-3x-18
=-2x^3+5x^2+9x-18
s: =-4x^3-12x^2+8x+5x^2+15x-10
=-4x^3-7x^2+23x-10
B1: quy đồng mẫu số các phân thức:
a. 5/ 6x^2y ; 7/ 12xy^2 ; 11/ 18xy
b. 4x+2/ 15x^3y ; 5y - 3/ 9x^2y ; x+1/5xy^3
c. 3/2x ; 3x-3/2x-1 ; 3x-2/2x- 4x^2
d. x^3 + 2x / x^3+1 ; 2x/ x^2 - x +1 ; 1/ x+1
e. y/ 2x^2 - xy ; 4x/ y^2 - 2xy
f. 1/x+2 ; 3/ x^2 - 4 ; x-14/ ( x^2 + 4x + 4 ) (x-2)
g. 1/x+2 ; 1/ (x+2)(4x+7) ;
h. 1/x+3 ; 1/ (x+3)(x+2) ; 1/ (x+2)(4x+7)
B2: dùng quy tắc đổi dấu để tìm mẫu thức chung :
a.4/ x+2 ; 2/x-2 ; 5x-6/4-x^2
b. 1-3x/2x ; 3x-2/2x-1 ; 3x-2/2x-4x^2
c. 1/ x^2 + 6x + 9 ; 1/ 6x-x^2-9 ; x/ x^2 -9
d. x^2 + 2/ x^3 - 1 ; 2/ x^2 + x +1 ; 1/ 1-x
e. x/ - 2y ; x/ x+2y ; 4xy/ 4y^2 - x^2
Ai làm xong trước mình tick nha!
phân tích đa thức thành nhân tử
\(a)3x^3+6x^2y \)
\(b)2x^3-6x^2\)
\(c)18x^2-20xy\)
\(d)xy+y^2-x-y \)
\(e)(x^2y^2-8)^2-1\)
\(f)x^2-7x-8\)
\(g)10x^2(2x-y)+6xy(y-2x)\)
\(h)x^2-2x+1-y^2\)
\(i)2x(x+2)+x^2(-x-2)\)
\(k)-9+6x-x^2\)
\(l)8xy-2x^2-8y^2\)
\(m)3x^2+5x-3y^2-5y\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
g) 10x²(2x - y) + 6xy(y - 2x)
= 10x²(2x - y) - 6xy(2x - y)
= 2x(2x - y)(5x - 3y)
h) x² - 2x + 1 - y²
= (x² - 2x + 1) - y²
= (x - 1)² - y²
= (x - y - 1)(x + y - 1)
i) 2x(x + 2) + x² (-x - 2)
= 2x(x + 2) - x²(x + 2)
= x(x + 2)(2 - x)
k) -9 + 6x - x²
= -(x² - 6x + 9)
= -(x - 3)²
l) 8xy - 2x² - 8y²
= -2(x² - 4xy + 4y²)
= -2(x - 2y)²
m) 3x² + 5x - 3y² - 5y
= (3x² - 3y²) + (5x - 5y)
= 3(x² - y²) + 5(x - y)
= 3(x - y)(x + y) + 5(x - y)
= (x - y)[3(x + y) + 5]
= (x - y)(3x + 3y + 5)
a,(3x - 1)(x + 3) = (2 - x)(5 - 3x)
b,(x + 5)(2x - 1) = (2x - 3)(x + 1)
c,(x + 1)(x + 9) = (x + 3)(x + 5)
d,(3x + 5)(2x + 1) = (6x - 2)(x - 3)
e,(x + 2)2 + 2(x - 4) = (x - 4)(x - 2)
f,(x + 1)(2x - 3)-(3x - 2) = 2(x - 1)2
a) \(\left(3x-1\right)\left(x+3\right)=\left(2-x\right)\left(5-3x\right)\)
\(\Leftrightarrow3x^2+8x-3=3x^2-11x+10\)
\(\Leftrightarrow19x-13=0\)
\(\Leftrightarrow x=\frac{13}{19}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{13}{19}\right\}\)
b) \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2+9x-5=2x^2-x-3\)
\(\Leftrightarrow10x-2=0\)
\(\Leftrightarrow x=\frac{1}{5}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{5}\right\}\)
c) \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+10x+9=x^2+8x+15\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình là \(S=\left\{3\right\}\)
d) \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow x=\frac{1}{33}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{33}\right\}\)
e) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)
\(\Leftrightarrow6x-4=-6x+8\)
\(\Leftrightarrow12x-12=0\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
f) \(\left(x+1\right)\left(2x-3\right)-\left(3x-2\right)=2\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-x-3-3x+2=2\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2-4x-1=2x^2-4x+2\)
\(\Leftrightarrow-1=2\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
Giải :
a) \(\left(3x-1\right)\left(x+3\right)=\left(2-x\right)\left(5-3x\right)\)
\(\leftrightarrow3x^2+8x-3-10+11x-3x^2=0\)
\(\leftrightarrow19x-13=0\)
\(\leftrightarrow x=\frac{13}{19}\)
Vậy phương trình có nghiệm là \(x=\frac{13}{19}\)
b) \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)
\(\leftrightarrow2x^2+9x-5-2x^2+x+3=0\)
\(\leftrightarrow10x-2=0\)
\(\leftrightarrow x=\frac{1}{5}\)
Vậy phương trình có nghiệm là \(x=\frac{1}{5}\)
c) \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)
\(\leftrightarrow x^2+10x+9-x^2-8x-15=0\)
\(\leftrightarrow2x-6=0\)
\(\leftrightarrow x=3\)
Vậy phương trình có nghiệm là \(x=3\)
d) \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)
\(\leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\leftrightarrow33x-1=0\)
\(\leftrightarrow x=\frac{1}{33}\)
Vậy phương trình có nghiệm là \(x=\frac{1}{33}\)
e) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\leftrightarrow x^2+4x+4+2x-8-x^2+6x-8=0\)
\(\leftrightarrow12x-12=0\)
\(\leftrightarrow x=1\)
Vậy phương trình có nghiệm là \(x=1\)
f) \(\left(x+1\right)\left(2x-3\right)-\left(3x-2\right)=2\left(x-1\right)^2\)
\(\leftrightarrow2x^2-x-3-3x+2-2x^2+4x-2=0\)
\(\leftrightarrow-3=0\left(VL\right)\)
Vậy phương trình này vô nghiệm
Nhớ k mik nhe , mik camon cậu