Tìm đa thức B biết : tổng của B và 4x2y+5y2-3xz + z2 là một đa thức không chứa biến x
1/ cho đa thức A với đa thức B = 4x^2y + 5y^2 - 3xz + z^2 là 1 đa thức ko chứa biến x
a) xác định bậc của A b) tính giá trị của A nếu 10x - 2y = 10z
Bài 1: tìm x biết:
a)(x-8 ).( x3+8)=0
b)( 4x-3)-( x+5)=3.(10-x )
bài 2: cho hai đa thức sau:
f( x)=( x-1).(x+2 )
g(x)=x3+ax2+bx+2
Xác định a và b biết nghiệm của đa thức f(x)cũng là nghiệm của đa thức g(x)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
Bài 2:
$f(x)=(x-1)(x+2)=0$
$\Leftrightarrow x-1=0$ hoặc $x+2=0$
$\Leftrightarrow x=1$ hoặc $x=-2$
Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$
Tức là:
$g(1)=g(-2)=0$
$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$
$\Rightarrow a=0; b=-3$
a(x)=x^3+5x^2-5x-2x^2+10x-18 b(x)=-x^3-5x^2+3x+2x^2-x-2 a)thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến b)tìm đa thức m(x) sao cho m(x)-A(x)=B(x) c)tìm nghiệm của đa thức m(x)
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
Tìm các đa thức A và B, biết:
a) A + (x2- 4xy2 + 2xz - 3y2 = 0
b) Tổng của đa thức B với đa thức (4x2y + 5y2 - 3xz +z2) là một đa thức không chứa biến x
a) A+(x2-4xy2+2xz-3y2)=0
⇒ A = -x2+4xy2-2xz+3y2
= -2x2+4xy2-2xz
còn câu b mik ko biết đa thức B là gì
cho 2 đa thức : f(x)=(x-1).(x+2) và g(x)=x^3 +a.x^2+b.x+2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
CHO đa thức f(x)=ax^2+(a+b)*x+b. Tìm a và b biết rằng f(x) nhận -5/4 là nghiệm và khi chia cho đa thức (x-2) thì có dư là 39
thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b
cho đơn thức P=(-2/3x^3y^2)(3/5x^2y^5)
a) Thu gọn P rồi xác định hệ số, phần biến và bậc của đơn thức
b) Cho đơn thức M(x)= 2x^2-7x+5 . Chứng minh x=5/2 là nghiệm của đa thức M(x) và x=-1 không phải là nghiệm của đa thức M(x)
Mọi người giúp mình với. Nghỉ dịch mà vẫn làm BT rồi chụp cho GV nữa :((
a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)
\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)
\(P=-\frac{2}{5}x^5y^7\)
Hệ số là \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)
Bậc của đơn thức là 12
b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :
\(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)
\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)
\(\Leftrightarrow-5+5=0\)
\(\Leftrightarrow0=0\)(TM)
Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)
Thay \(x=-1\)vào đơn thức M(x), ta được :
\(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)
\(\Leftrightarrow2+7+5=0\)
\(\Leftrightarrow14=0\)(KTM)
Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)
Dùng tính chất của tỉ lệ thức hãy biến đổi mỗi tỉ lệ thức sau thành một tỉ lệ thức chỉ còn trong bốn số hạng của tỉ lệ thức là chưa biết, rồi tìm x
a, 3x-5 / x+4 =5/2
b, 3x-1/ 2x+1 = 3/7
a/ 3x-5/x+4=5/2
<=> 6x-10=5x+20
<=> 6x-5x=30
<=> x=30
b/ 3x-1/2x+1=3/7
<=> 21x-7 = 6x+3
<=> 21x-6x=10
<=> 15x =10
<=> x=10/15
Cho hai đa thứ sau:
f(x)= (x-1)(x+2)
g(x)=x3+ax3+bx+2
Xách định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
Đặt f(x)=0
=>(x-1)(x+2)=0
=>x=1 hoặc x=-2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}1^3+a\cdot1^3+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^3+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-6\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)