Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
Chứng minh rằng biểu thức sau luôn dương với mọi giá trị của biến: x2+y2-2x-4y+6
\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2\) + (y-2)^2 + 1
Xét nữa là xong
Chứng minh rằng biểu thức:
A = x(x – 6) + 10 luôn dương với mọi x
B = x2 – 2x + 9y2 – 6y + 3 luôn dương với mọi x, y
`A=x(x-6)+10=x^2-6x+10`
`=x^2 -2.x .3 + 3^2 + 1`
`=(x-3)^2+1 >0 forall x`
`B=x^2-2x+9y^2-6y+3`
`=(x^2-2x+1)+(9y^2-6y+1)+1`
`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
Chứng minh rằng các biểu thức sau luôn có giá trị dương với mọi giá trị của biến
x^2-8x+20
4x^2-12x+11
x^2-x+1
x^2-2x+y^2+4y+6
x^2-8x+20=(x^2-8x+16)+4
=(x-4)^2+4>0(vì (x-4)^2>=0)
4x^2-12x+11=4x^2-12x+9+2
=(2x-3)^2+2>0
x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>0
x^2-2x+y^2+4y+6
=x^2-2x+1+y^2+4y+4+1
=(x-1)^2+(y+2)^2+1>0
a: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(4x^2-12x+11\)
\(=4x^2-12x+9+2\)
\(=\left(2x-3\right)^2+2>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d: Ta có: \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
Chứng minh rằng các giá trị của biểu thức sau luôn dương với mọi giá trị của biến:
A=2x²-20x+7
B=9x²-6xy+2y²+1
E=x²-2x+y²+4y+6
D=x²-2x+2
\(A=2x^2-20x+7=2\left(x^2-10x+25\right)-43=2\left(x-5\right)^2-43\ge-43\left(\forall x\right)\)
=> Chưa thể khẳng định A dương
\(B=9x^2-6xy+2y^2+1\)
\(B=\left(9x^2-6xy+y^2\right)+y^2+1\)
\(B=\left(3x-y\right)^2+y^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(C=x^2-2x+y^2+4y+6\)
\(C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(C=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(D=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
chứng minh rằng các biểu thức sau luôn luôn dương với mọi x
A = x (x - 6) + 10
B = x2 - 2x + 9y2 - 6y + 3
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
thanks bạn nhìu
A = x( x - 6 ) + 10
A = x2 - 6x + 10
A = ( x2 - 6x + 9 ) + 1
A = ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 - 2x + 9y2 - 6y + 3
B = ( x2 - 2x + 1 ) + ( 9y2 - 6y + 1 ) + 1
B = ( x - 1 )2 + ( 3y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với mik đang cần gấp
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.