Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nâmhhhb
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2021 lúc 23:52

E là điểm nào bạn?

Do F thuộc Oy, gọi tọa độ F có dạng \(F\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AF}=\left(4;y-1\right)\\\overrightarrow{CF}=\left(-3;y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AF^2=16+\left(y-1\right)^2\\CF^2=9+\left(y+2\right)^2\end{matrix}\right.\)

ACF cân tại F \(\Rightarrow AF^2=CF^2\)

\(\Rightarrow16+\left(y-1\right)^2=9+\left(y+2\right)^2\)

\(\Leftrightarrow17+y^2-2y=13+y^2+4y\)

\(\Rightarrow6y=4\Rightarrow y=\dfrac{2}{3}\)

\(\Rightarrow F\left(0;\dfrac{2}{3}\right)\)

Hạnh Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2017 lúc 10:28

Gọi C(x, y).

Ta có  B A → = 1 ; 3 B C → = x − 1 ; y − 1 .

Tam giác ABC vuông cân tại B:

⇔ B A → . B C → = 0 B A = B C ⇔ 1. x − 1 + 3. y − 1 = 0 1 2 + 3 2 = x − 1 2 + y − 1 2

⇔ x = 4 − 3 y 10 y 2 − 20 y = 0 ⇔ y = 0 x = 4 hay y = 2 x = − 2 .

 

 Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2019 lúc 13:35

Chọn A

Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 1:10

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN

Nhã Uyên Đinh Bùi
Xem chi tiết
Đỗ Tuệ Lâm
8 tháng 3 2022 lúc 5:50

Giả sử \(C\)  cần tìm có tọa độ là \(\left(x;y\right)\). Để tam giác ABC vuông cân tại B ta phải có:

\(\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=0\\\left|\overrightarrow{BA}\right|=\left|\overrightarrow{BC}\right|\end{matrix}\right.\)  với \(\overrightarrow{BA}=\left(1;3\right)\)  và \(\overrightarrow{BC}=\left(x-1;y-1\right)\)

Điều đó có nghĩa là:

\(\left\{{}\begin{matrix}1.\left(x-1\right)+3\left(y-1\right)=0\\1^2+3^2=\left(x-1\right)^2+\left(y-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\\left(3-3y\right)^2+\left(y-1\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\10y^2-20y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C\left(4;0\right)\\C\left(-2;2\right)\end{matrix}\right.\)

Nguyễn Ngọc Thảo
Xem chi tiết
Nguyễn Hoài Thương
Xem chi tiết
Mirai
21 tháng 3 2021 lúc 15:23

undefined

Nguyễn Thị Thế Tâm
Xem chi tiết
Nguyễn Mina
Xem chi tiết