Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thu phuong
Xem chi tiết
Harry James Potter
Xem chi tiết
tth_new
6 tháng 12 2019 lúc 7:59

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x, y, z > 0; x + y + z  = 1. Quy về: \(\sqrt{\frac{1}{x}+\frac{1}{yz}}+\sqrt{\frac{1}{y}+\frac{1}{zx}}+\sqrt{\frac{1}{z}+\frac{1}{xy}}\ge\sqrt{\frac{1}{xyz}}+\sqrt{\frac{1}{x}}+\sqrt{\frac{1}{y}}+\sqrt{\frac{1}{z}}\)

\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{x}{\sqrt{x+yz}+\sqrt{yz}}+\frac{y}{\sqrt{y+zx}+\sqrt{zx}}+\frac{z}{\sqrt{z+xy}+\sqrt{xy}}\ge1\) (chuyển vế qua nhóm lại rồi liên hợp)

\(\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{x\left(x+y+z\right)+yz}+\sqrt{yz}}\ge1\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{yz}}\ge1\)

BĐT này đúng! Thật vậy:

\(VT\ge\Sigma_{cyc}\frac{x}{\frac{\left(x+y\right)+\left(z+z\right)}{2}+\frac{\left(y+z\right)}{2}}=\Sigma_{cyc}\frac{x}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Ta có đpcm. Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\Leftrightarrow a=b=c=3\)

Khách vãng lai đã xóa
Nguyễn Võ Anh Nguyên
Xem chi tiết
phạm thanh duy
Xem chi tiết
Trần Thanh Phương
1 tháng 6 2019 lúc 8:21

Áp dụng bđt AM-GM :

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{a^2+1}{\left(a^2+1\right)\cdot4}}=1\)

Tương tự ta có : 

\(\frac{1}{b^2+1}+\frac{b^2+1}{4}\ge1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge1\)

Cộng từng vế ta có :

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{a^2+b^2+c^2+3}{4}\ge3\)

Áp dụng bđt quen thuộc : \(a^2+b^2+c^2\ge ab+bc+ac=3\)

Khi đó : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{3+3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Trần Phúc Khang
1 tháng 6 2019 lúc 13:12

bạn làm sai rồi . Khi \(a^2+b^2+c^2\ge3\) bạn chuyển vế thì nó không cùng dấu với bất đẳng thức

Thanh Tùng DZ
1 tháng 6 2019 lúc 16:32

cách này được ko. ( có tham khảo )

Không mất tính tổng quát, giả sử c = min ( a,b,c ).

Khi đó : ab + bc + ac = 3 \(\Rightarrow\)ab \(\ge\)1

CM với a,b > 0 và ab \(\ge\)1 thì \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\) ( tự c/m )

Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}\)

ta cần c/m \(\frac{2}{ab+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\ge\frac{3}{2}\)

\(\Leftrightarrow c^2+3\ge3abc^2+ab\)\(\Leftrightarrow c^2+bc+ac\ge3abc^2\)

\(\Leftrightarrow a+b+c\ge3abc\)

BĐT trên đúng vì theo AM-GM ta có : \(a+b+c\ge\sqrt{3\left(ab+bc+ac\right)}=3\)

và \(3=ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow3abc\le3\)

do đó ta có đpcm

Dấu  "= " xảy ra \(\Leftrightarrow\)a = b = c = 1

Lê Văn Hoàng
Xem chi tiết
Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
3 tháng 11 2019 lúc 16:43

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bdt Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)--\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Đặng Phương Nga
Xem chi tiết
Kudo Shinichi
12 tháng 10 2019 lúc 21:43

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng BĐT Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

abc081102
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Akai Haruma
12 tháng 6 2020 lúc 16:37

Lời giải:

Áp dụng BĐT AM-GM: $1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$

Từ đây, áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{a^2}{abc+a}+\frac{b^2}{abc+b}+\frac{c^2}{abc+c}\geq \frac{(a+b+c)^2}{3abc+a+b+c}=\frac{1}{3abc+1}\geq \frac{1}{3.\frac{1}{27}+1}=\frac{9}{10}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$