Cho a,b,x,y,z là 5 số tự nhiên khác 0 thỏa mãn
a^2+b^2=x^2+y^2+z^2
Cho 5 số tự nhiên khác 0 và a ; b ; x ; y ; z thỏa mãn
a^2 + b^2 = x^2 + y^2 + z^2 .Hỏi tổng S có là số
nguyên tố hay không nếu S = a + b + x + y + z
Cho 5 số tự nhiên khác 0 là a,b,x,y,z thỏa mãn a2+b2=x2+y2+z2
Hỏi tổng S=a+b+x+y+z có là số nguyên tố không?
Vì a,b,x,y,z là các số tự nhiên khác 0.
=>a,b,x,y,z >=1
=>S=a+b+x+y+z >=1+1+1+1+1=5
=>S >=5>2
=>S>2
Ta có: a^2+b^2=x^2+y^2+z^2
=>a^2+b^2+a^2+b^2=a^2+b^2+x^2+y^2+z^2
=> 2.(a^2+b^2)=a^2+b^2+x^2+y^2+z^2
Lại có:
S= a+b+x+y+z
=> S^2=(a+b+x+y+z).(a+b+x+y+z)
=> S^2=a.(a+b+x+y+z)+b.(a+b+x+y+z)+x.(a+b+x+y+z)+y.(a+b+x+y+z)+
z.(a+b+x+y+z)
=> S^2=a^2+a.b+a.x+a.y+a.z+b.a+b^2+b.x+b.y+b.z+x.a+x.b+x^2+x.y+x.z+y.a+
y.b+y.x+y^2+y.z+z.a+z.b+z.x+z.y+z^2
=> S^2=(a^2+b^2+x^2+y^2+z^2)+(a.b+b.a)+(a.x+x.a)+(a.y+y.a)+(a.z+z.a)+
(b.x+x.b)+(b.y+y.b)+(b.z+z.b)+ (x.y+y.x)+(x.z+z.x)+(y.z+z.y)
=> S^2=2.(a^2+b^2)+2.a.b+2.a.x+2.a.y+2.a.z+2.b.x+2.b.y+2.b.z+2.x.y+2.x.z+2.y.z
=> S^2=2.(a^2+b^2+a.b+a.x+a.y+a.z+b.x+b.y+b.z+x.y+x.z+y.z)
=> S^2 chia hết cho 2.
Giả sử S là số nguyên tố mà S>2.
=>S không chia hết cho 2.
=>S^2 không chia hết cho 2.
=>Vô lí.
=>S không phải là số nguyên tố.
Vậy S không phải là số nguyên tố.
Cho 5 số tự nhiên khác 0 là a,b,x,y,z thỏa mãn a2+b2=x2+y2+z2
Hỏi tổng S=a+b+x+y+z có là số nguyên tố không?
a, b, x, y, z = 1
1\(^2\)+ 1\(^2\)= 1\(^2\)+ 1\(^2\)+ 1\(^2\)
Vì 1 + 1 + 1 + 1 + 1 = 5 là số nguyên tố nên a + b + x + y + z là số nguyên tố.
Vậy, a + b + x + y + z là số nguyên tố
Lê Duy Khang à làm sao 12 + 12 = 12 + 12 + 12
2 # 3
Cho 5 số tự nhiên khác 0 là a,b,x,y,z thỏa mãn a2+b2=x2+y2+z2
Hỏi tổng S=a+b+x+y+z có là số nguyên tố không?
Cứu vs
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
Ta có \(\dfrac{\left(x^2-yz\right)^2}{a^2}=\dfrac{\left(y^2-zx\right)\left(z^2-xy\right)}{bc}\) mà a2 = bc nên:
\(\left(x^2-yz\right)^2=\left(y^2-zx\right)\left(z^2-xy\right)\).
\(\Leftrightarrow x^4+y^2z^2-2x^2yz=y^2z^2+x^2yz-xy^3-xz^3\)
\(\Leftrightarrow x^4+xy^3+xz^3-3x^2yz=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3+y^3+z^3=3xyz\end{matrix}\right.\).
Rõ ràng nếu \(x^3+y^3+z^3=3xyz\) thì \(x=y=z\) (tính chất quen thuộc). Do đó \(\dfrac{x^2-yz}{a}=0\) (vô lí).
Do đó x = 0.
Kết hợp với x + y + z = 2010 thì y + z = 2010.
Rõ ràng với mọi x, y, z thỏa mãn y + z = 2010 và x = 0 thì ta thấy thỏa mãn đk bài toán.
Vậy...
1.Cho 3 số tự nhiên a,b,c đôi một khác nhau thỏa mãn a+b+c=0
tính A=ab/(a^2+b^2-c^2)+bc/(b^2+c^2-a^2)+ac/(a^2+c^2-b^2)
2.Tìm 3 số nguyên tố liên tiếp a,b,c để a^2+b^2+c^2 nguyên tố
3.Cho x,y,z đôi một khác nhau
cmr: M-1/(x-y)^2+1/(y-z)^2+1/(z-x)^2 là binhg phuiwng 1 số hữu tỉ
4.Cho A=(x^2+x+2)/(x^3-1)
Tìm x nguyên để A nguyên
5.Tìm x,y thỏa mãn (X^2+1)(x^2+y^2)=4x^2y
Giúp mk nha các bạn
bài 1:CHo x,y,z dương thỏa mãn : 0 <= x<= 4<=y<=z<=7 và x+y+z=15.Tìm GTLN của p=xyz
bài 2: Cho a,b là 2 số tự nhiên khác 0 và a+b=n.Tìm GTLN,GTNN của Q=ab
bài 3: Tìm x,y thuộc z biết 5x^2 +2y^2 +10x + 4y =6
Cho 5 số tự nhiên khác 0 là a;b;x;y;z tòa mãn: a^2+b^2=x^2+y^2+z^2. H ỏi tổng S = a+b+x+y+z có là số nguyên tố không ?
Cho a, b, x, y, z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). CMR: \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)