Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Đặng Phương
Xem chi tiết
Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 19:27

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 21:54

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

Mai Tuấn Hưng
Xem chi tiết
Nguyễn Đăng Nhân
22 tháng 2 2022 lúc 17:24

Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:

\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)

Vậy ta cần chứng minh:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

Vậy bất đẳng thức ban đầu được chứng minh.

Khách vãng lai đã xóa
Blue Moon
Xem chi tiết
tth_new
11 tháng 8 2020 lúc 20:12

Ta còn có:

Bất đẳng thức \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{1}{k\left(a^2+b^2+c^2\right)+\left(\frac{2}{9}-k\right)\left(ab+bc+ca\right)}\)

đúng với mọi a,b,c,k không âm (k = \(\text{constant}\))

Khách vãng lai đã xóa
Nữ hoàng sến súa là ta
Xem chi tiết
alibaba nguyễn
17 tháng 4 2019 lúc 9:09

\(a^2+b^2+c^2\ge\frac{1}{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đung)

Cỏ dại
Xem chi tiết
Hoàng Đức Khải
16 tháng 4 2019 lúc 22:29

Ta chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) 

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (Đúng)

\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

Giải chi tiết cho dễ hiểu

Con Chim 7 Màu
17 tháng 4 2019 lúc 8:25

Cách khác nè:

Áp dụng BĐT bun-hia-cop-xki ta có:

\(\left(a^2+b^2+c^2\right)\left(1+1+1\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\left(đpcm\right)\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)

Hoàng Đức Khải
18 tháng 4 2019 lúc 22:05

Tương tự nhau cả mà

Măm Măm
Xem chi tiết
Khôi Bùi
7 tháng 4 2019 lúc 9:07

Áp dụng BĐT Cauchy cho 3 số , ta có :

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Phạm Bá Tâm
Xem chi tiết
Hotory Yaruyuki
9 tháng 2 2022 lúc 17:20

áp dụng cách đánh giá :
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\)\(\left(\sqrt{\frac{a^2+b^2}{2}\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}\right)\)

\(hay\sqrt{3\left(a^2+b^2+c^2\right)\ge\sqrt{\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}}\)

Ta cần chỉ ra được :\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, cần chú ý đến \(a^2+b^2+c^2\)Ta được :

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

ta cần chứng minh được :

\(\frac{\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(hay\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Dễ thấy\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Do đó\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)

Theo bất đẳng thức Bunhiacopxki

\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)

Do đó ta được

\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Bài toán được chứng minh :333!~

Khách vãng lai đã xóa
Nguyễn Đăng Nhân
9 tháng 2 2022 lúc 17:37

Phân tích bài toán.

Ta làm 2 vế đẳng thức xuất hiện đại lượng kiểu\(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\)

Để biến đổi vế trái ta sẽ được:

\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}-\left(a+b+c\right)\)

Để biến đổi vế phải ta sẽ được:

\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)

Đến đây ta chỉ cần chỉ ra được \(\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\ge0\)

Bài làm:

Bất đẳng thức cần chứng mình tương đương với:

\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a\ge\)

\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}-\left(a+b+c\right)\)

\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\sqrt{\frac{a^2+b^2}{2}}-\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}}-\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}-\frac{c+a}{2}\)

\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\right]\)

\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\right]\ge0\)

Đặt:

\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)

\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\)

\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\)

Chứng mình hoàn tất nếu ta chứng mình được A,B.C\(\ge\)0, Vậy:

\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}=\frac{2\sqrt{2\left(a^2+b^2\right)}+2a+b}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}>0\)

\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}=\frac{2\sqrt{2\left(b^2+c^2\right)}+2b+c}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}>0\)

\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}=\frac{2\sqrt{2\left(c^2+a^2\right)+2c+a}}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}>0\)

Vậy biểu thức đã được chứng minh.

Khách vãng lai đã xóa
Lê Đức Anh
Xem chi tiết
tth_new
17 tháng 11 2019 lúc 10:12

Bài này chỉ đơn giản là Cô si ngược dấu, mà thêm tên t vào làm cái qq gì-_-

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
17 tháng 11 2019 lúc 10:41

tth_new bác này ở trình khác r.

\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b+1}=a-\frac{ab^2}{b+1}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự 

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ca}{2}\)

Cộng lại \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Khi đó \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra tại a=b=c=1

Khách vãng lai đã xóa
tth_new
17 tháng 11 2019 lúc 10:43

zZz Cool Kid zZz trình gì, chỉ là cô si ngược dấu

Khách vãng lai đã xóa
Nguyễn Hoàng Hải
Xem chi tiết
Nguyễn Đăng Nhân
19 tháng 2 2022 lúc 9:39

Ta viết lại bất đẳng thức trên thành:

\(\frac{a-b}{b}-\frac{a-b}{c}+\frac{c-a}{a}-\frac{c-a}{c}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)

Hay: \(\frac{\left(a-b\right)\left(c-b\right)}{bc}+\frac{\left(c-a\right)^2}{ca}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)

Tiếp tục khai triển và thu gọn ta được:

\(\Leftrightarrow b\left(c-a\right)^2\left(b^2+ab+bc\right)\ge a\left(a-b\right)\left(b-c\right)\left(a+b\right)\left(b+c\right)\)

\(\Leftrightarrow\left(b-ac\right)^2\ge0\)

Bất đẳng thức cuối cùng luôn đúng hay bài toán được chứng minh xong.

Khách vãng lai đã xóa