rut gon H=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
Rut gon bieu thuc
Điều kiện : x>=0
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\sqrt{x}+1-\sqrt{x}=1\)
Rut gon:
a) \(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
b) \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
c) \(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)
=>A^3-3A-18=0
=>A=3
b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)
=>B^3-3B-14=0
=>B=2,82
c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)
=>C^3+6C-40=0
=>C=2,84
\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
RUT GON
rut gon bieu thuc a) \(\sqrt{15+2\sqrt{5}-\sqrt[]{21-4\sqrt{5}}}\)
b)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
a) \(\sqrt{15+2\sqrt{5}-\sqrt{21-4\sqrt{5}}}\)
\(=\sqrt{15+2\sqrt{5}-\sqrt{\left(1-2\sqrt{5}\right)^2}}\)
\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)
\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)
\(=\sqrt{15+2\sqrt{5}-2\sqrt{5}+1}\)
\(=\sqrt{16}\)
\(=4\)
b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt[4]{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt[4]{5-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)
\(=\sqrt[4]{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt[4]{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt[4]{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt[4]{5-\sqrt{\left(1-\sqrt{5}\right)^2}}\)
\(=\sqrt[4]{5-\left(\sqrt{5}-1\right)}\)
\(=\sqrt[4]{5-\sqrt{5}+1}\)
\(=\sqrt[4]{6-\sqrt{5}}\)
rut gon
\(\frac{\sqrt{4+\sqrt{5}}+\sqrt{4-\sqrt{5}}}{\sqrt{4+\sqrt{11}}}\)
cho A = \(\left(\dfrac{\sqrt{x+1}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{3\sqrt{x}-x}{x+4\sqrt{x}+4}\)
rut gon A
\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)
\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
Rut gon
a) ( 2- \(\frac{a-3.\sqrt{a}}{\sqrt{a}-3}\)) . ( 2- \(\frac{5.\sqrt{a}+\sqrt{a}.b}{\sqrt{b}-5}\))
b) \(\frac{9-a}{\sqrt{a}+3}\)- \(\frac{9-6.\sqrt{a}+a}{\sqrt{a}-3}\)- 6
a) \(\left(2-\frac{a-3.\sqrt{a}}{\sqrt{a}-3}\right).\left(2-\frac{5.\sqrt{a}+\sqrt{a}.b}{\sqrt{b}-5}\right)\)
=\(\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2+\frac{\sqrt{a}\left(5-\sqrt{b}\right)}{5-\sqrt{b}}\right)\)
=\(\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\)
=4-a ( Bạn xem lại đề bài giúp mình )
b)\(\frac{9-a}{\sqrt{a}+3}-\frac{9-6\sqrt{a}+a}{\sqrt{a}-3}\) -6
=\(\frac{\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)}{\sqrt{a}+3}+\frac{\left(3-\sqrt{a}\right)^2}{3-\sqrt{a}}-6\)
=\(3-\sqrt{a}+3-\sqrt{a}-6\)
=-2\(\sqrt{a}\)
Rut gon
a) ( 2- \(\frac{a-3.\sqrt{a}}{\sqrt{a}-3}\)) . ( 2- \(\frac{5.\sqrt{a}+\sqrt{a}.b}{\sqrt{b}-5}\))
b) \(\frac{9-a}{\sqrt{a}+3}\)- \(\frac{9-6.\sqrt{a}+a}{\sqrt{a}-3}\)- 6
rut gon bieu thuc \(y=3\sqrt{5}-2\sqrt{5}+4\sqrt{5}\)