Cho a,b,c thỏa mãn a+b+c=0 .Tính giá trị biểu thức sau:
\(A=\left(a^2+b^2-c^2\right)^2c+\left(a^2+c^2-b^2\right)^2b+4a^3bc\)
Cho a,b,c thỏa mãn a+b+c=0 .Tính giá trị các biểu thức sau:
\(G=\left(a+b\right)^2ab+\left(a+c\right)^2ac+\left(b+c\right)^2bc\)
\(E=a^3+b^3+c^3-3abc\)
\(H=\left(a^2+b^2-c^2\right)^2c+\left(a^2+c^2-b^2\right)b+4a^3bc\)
\(K=\left(a^2+b^2+c^2\right)^2-2\left(a^{\text{4}}+b^4+c^4\right)^{ }\)
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
1,cho các sô thực a,b,c thỏa mãn abc(a+b+c)=1. Tính giá trị của biểu thức Q=\(\frac{c^2\left(a+b\right)^2\left(1+a^2b^2\right)}{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}\)
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
Cho các số dương a,b,c thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức:
\(P=2\left(a^2b+b^2c+c^2a\right)+\left(a^2+b^2+c^2\right)+4abc\)
đại khái giống Ngọc thôi, sửa 1 số lỗi
\(P=1-2\left(ab^2+bc^2+ca^2\right)-2abc\)
\(b=mid\left\{a;b;c\right\}\)\(\Rightarrow\)\(ab^2+ca^2\le a^2b+abc\)
\(\Rightarrow\)\(P\le1-2a^2b-2bc^2-4abc=1-2b\left(c+a\right)^2\le1-8\left(\frac{b+\frac{c+a}{2}+\frac{c+a}{2}}{3}\right)^3=\frac{19}{27}\)
ta có ab+bc+ca=(a+b+c)(ab+bc+ca)=(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc
=> a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=1-2(ab+bc+ca)=1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]
do đó P=2(a2b+b2c+c2a)+1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]+4abc
=1-2(ab2+bc2+ca2)
không mất tính tổng quát giả sử a =<b=<c. suy ra
a(a-b)(b-c) >=0 => (a2-a)(b-c) >=0
=> a2b-a2c-ab2+abc >=0 => ab2+ca2=< a2b+abc
do đó ab2+bc2+ca2+abc=(ab2+ca2)+bc2+abc =< (a2b+abc)+b2c+abc=b(a+c)2
với các số dương x,y,z ta luôn có: \(x+y+z-3\sqrt[3]{xyz}=\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left[\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right]\ge0\)
=> \(x+y+z\ge3\sqrt[3]{xyz}\Rightarrow xyz\le\left(\frac{x+y+z}{3}\right)^2\)(*)
dấu "=" xảy ra khi và chỉ khi x=y=z
áp dụng bđt (*) ta có:
\(b\left(a+c\right)^2=ab\left(\frac{a+c}{2}\right)\left(\frac{a+c}{2}\right)\le4\left(\frac{b+\frac{a+c}{2}+\frac{a+c}{2}}{3}\right)^3=4\left(\frac{a+b+c}{3}\right)^3=\frac{4}{27}\)
=> P=1-2(ab2+bc2+ca2+abc) >= 1-2b(a+c)2 >= 1-2.4/27=19/27
vậy minP=19/27 khi x=y=z=1/3
@ Hai Ngox lưu ý a,b,c hoán vị nên chỉ được giả sử \(b=mid\left\{a;b;c\right\}\) , với lại bài sai nhiều quá, xem lại nhé
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
cho a,b,c không âm thỏa mãn:
\(\sqrt{a}+b+\sqrt{c}=\sqrt{3}\) và\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)+\left(c+2b\right)}=3\)
Tính giá trị của biểu thức \(M=\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
giúp mk vs thanks trước nha
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
Cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2+ab+bc+ca=6\)
Tìm giá trị lớn nhất của biểu thức \(P=\left(2a+bc\right)\left(2b+ca\right)\left(2c+ab\right)\)
Cho a, b, c là ba số dương thỏa mãn: \(\dfrac{\text{2b+c-a}}{a}=\dfrac{\text{2c-b+a}}{b}=\dfrac{\text{ 2a+b-c}}{c}\)
Tính giá trị biểu thức: P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3a-2c\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)} \)
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)