Cho tam giác ABC biết BC=10 cm
Vẽ trung tuyến BD và CE cắt nhau tại G
CMR: BD+CE>!5 cm
Giúp mk nha
Cho tam giác ABC có trung tuyến BD và CE cắt nhau tại G, cho biết BC=10, BD=9, CE=12. Tính diện tích ABCD
+Nếu làm theo tính diện tích tam giác ABC:
Hình: Tự vẽ
G là trọng tâm tam giác ABC:
\(\Rightarrow BG=\frac{2}{3}BD=6;CG=\frac{2}{3}CE=8.\)
Ta có: 3 giác BGC có \(BG^2+CG^2=6^2+8^2=10^2=BC^2\)=> 3 giác BGC vuông tại G
=> Diện tích BDC=1/2BD.GC=36
=> SABC=2SBCD=72 (chung chiều cao, đáy AC=2CD)
cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Biết BD=CE. Chứng minh DG+EG > \(\dfrac{1}{2} \)BC
DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC
cho tam giác abc , đường trung tuyến bd và ce cắt nhau tại g , biết bd = ce
a,chứng minh : AG vuông góc với BC
b,cho M là một điểm nằm trong tam giác
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G . Biết BD = CE
a) Chứng minh tam giác GBC là tam giác cân
b) Chứng minh DG + EG > 1/2 BC
Câu này làm thế nào vậy mn
giúp mình với
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
Cho tam giác ABC có BC = 8cm , các đg trung tuyến BD , CE cắt nhau tại G .
Cm : BD + CE > 12cm
Ta có G là trọng tâm tam giác ABC (BG=2BD/3 ; CG=2CG/3):
⇒ BD+CE= 3(BG+CG)/2 (1)
Xét tam giác BGC (trong một tam giác thì tổng hai cạnh luôn lớn hơn cạnh còn lại):
⇒ BG+CG > BC (2)
Từ (1) và (2), ta suy ra: BD+CE >3BC/2 ⇔ BD+CE > 12 (cm)
giúp e bài này với ạ!!!
Cho tam giác ABC, 2 trung tuyến BD và CE cắt nhau tại G. biết BD=6cm,CE=4,5cm,độ dài BC=?
bài này tớ cũng chưa nghĩ ra nhanh được
cho tam giác ABC vuông cân tại A.vẽ 2 trung tuyến BD và CE cắt nhau tại G .chứng minh a)AG vuông góc với BC b)BD=CE
cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G. Biết BD=CE
a,chứng minh BG=CG;DG=GE
b,chứng minh tam giác ABC cân
Cho tam giác ABC có BC = 8 cm, các đường trung tuyến BD, CE cắt nhau tại G. Chứng minh BD + CE > 12 cm.