Bài 1
Cho tam giác ABC(AB < AC). Đường trung trực của BC cắt AC ở M. Chứng minh AM + BM = AC
bài 1 cho tam giác ABC trung tuyến AM đường trung trực của AB cắt AM tại O chứng minh O cách đều 3 đỉnh của tam giác
bài 2 cho tam giác ABC có AB<AC đường trung trực của BC cắt AC tại N chứng minh AM+BM=AC
bài 2:
ta có : điểm M nằm trên đường trung trực của BC nên M sẽ cách đều B và C => MB=MC
Ta có: AC=AM+MC
=> AC=AM+MB
Bài 2: Tam giác BNC cân tại N vì đường thẳng hạ từ N xuống vuong góc cạnh đối diện cũng là trung tuyến nên BN=NC
=> AN+BN=AN+NC=AC
cho tam giác ABC có AB<AC. Đường trung trực của BC cắt AC ở M. Chứng minh AM+BM=AC
Cho tam giác ABC: AB<AC. Đường trung trực BC cắt AC tại M. Chứng minh AM+BM=AC
bài 1: Cho tam giác ABC cân có Â=36 độ. Trung trực AB cắt AC tại D. Chứng minh BD là phân giác tam giác ABC
bài 2: Cho tam giác ABC, Â=90 dộ,AB<AC. Đường trung trực của cạnh AB cắt AC ở M. Biết BM là phân giác góc ABC. Tính góc ACB
bài 3: Cho tam giác ABC cân A. Trung tuyến AM. Gọi I là điểm nằm giữa A và m. Chứng minh rằng tam giác AIB=tam giác AIC; tam giác IBM= tam giác ICM
Bài 13: Cho ABC có AB = 6cm BC = 8 cm; AC = 10 cm; Tia phân giác của góc A cắt cạnh BC tại M; trên cạnh AC lấy điểm N sao cho AB = AN
a) ABC là tam giác gì ? Vì sao ? b) Chứng minh MN AC
c)Chứng minh AM là đường trung trực của đoạn thẳng BM
d*) Qua C kẻ đường thẳng song song với NB cắt tia AB tại T. Chứng minh 3 điểm T; M; N thẳng hàng
a: AC^2=BA^2+BC^2
=>ΔABC vuông tại B
b: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
=>góc ANM=90 độ
=>MN vuông góc AC
c: AB=AN
MB=MN
=>AM là trung trực của BN
d: CT//BN
BN vuông góc AM
=>AM vuông góc CT
Xét ΔATC có
AM,CB là đường cao
AM cắt CB tại M
=>M là trực tâm
=>TM vuông góc AC
mà MN vuông góc AC
nên T,M,N thẳng hàng
Mn giúp mk bài này vs ạ
Bài toán 1: Cho tam giác ABC cân tại A, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm 0 cách đều 3 đỉnh của tam giác ABC.
Bài toán 2: Cho tam giác cân ABC (AB = AC). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC.
Bài toán 3: Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP.
a) Chứng minh tam giác MNP là tam giác đều b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng 0 cũng là
giao điểm của các đường trung trực của tam giác MNP.
im đi Lê Minh Phương
kệ mẹ tao, thằng điên
Cho tam giác ABC (AB<AC). Trên AC xác định điểm M sao cho AM=AB. Vẽ đường trung trực của BC và MC cắt nhau tại O. CMR: OA là đường trung trực của BM.
Do O thuộc đường trung trực của MC
\(\Rightarrow MO=OC\) (1)
Do O thuộc đường trung trực của BC
\(\Rightarrow OC=OB\) 2)
Từ (1) và (2) \(\Rightarrow OM=OB\)
Lại có: \(AM=AB\)
\(\Rightarrow AO\) là đường trung trực của BM
Tam giác ABC có AB bé hơn AC. Trên AC lấy M sao cho AM=AB. Tia phân giác của góc BAC cắt bc tại D.
Chứng minh DM=DB
Kẻ MD cắt AB kéo dài tại N. chứng minh MC=BN
Chứng minh AD là đường trung trực của NC
Chứng minh BM // NC
Tam giác ABC có AB bé hơn AC. Trên AC lấy M sao cho AM=AB. Tia phân giác của góc BAC cắt bc tại D.
Chứng minh DM=DB
Kẻ MD cắt AB kéo dài tại N. chứng minh MC=BN
Chứng minh AD là đường trung trực của NC
Chứng minh BM // NC
hình tự vẽ nka :D
xét tam giác ABD và tam giác AMD có
AD chung
A1=A2
AB = AM
=> tam giác ABD = tam giác AMD ( c.g.c)
=> DM = BD