Chứng minh rằng: \(B=\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2019^3}< \frac{1}{2^2}\)
Chứng minh rằng
a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2018}{2019!}< 1\)1
b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{999.1000-1}{1000!}< 2\)
\(1.\)Chứng minh rằng : \(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+.....+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}< \frac{1}{2}\)
\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)
\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)
\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)
\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)
\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)
Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)
\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)
\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)
\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)
\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)
\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)
\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)
\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)
\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)
chứng minh rằng:'
\(\frac{1}{\sqrt{2}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2019}}< \frac{88}{45}\)
Đề sai r bạn phải là \(2020\sqrt{2019}\)
chứng tỏ rằng
a) A= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< 1\)
b) B= \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}< \frac{1}{2}\)
a/
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(A=2A-A=1-\frac{1}{2^{100}}< 1\)
b/
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)
\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)
A=\(\frac{\frac{1}{2018}+\frac{2}{2017}+\frac{3}{2016}+....+\frac{2017}{2}+\frac{2018}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2019}}\). Chứng minh rằng A là số nguyên
Mong mọi người giúp
ai giúp mình bài này :
Chứng minh rằng :
\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4035}}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}>\frac{2019}{4036}\)
Nguyễn Văn Anh Kiệt
CTV thì vẫn đc hỏi!! Chỉ những thằng não ngắn mới nghĩ như vậy~~
ko lm đc thì ra chỗ khác cho ng` giỏi làm =))
1.chứng minh rằng A<\(\frac{1}{16}\) biết A=\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+.....+\frac{99}{5^{100}}\)
2.tính (M-N)\(^3\) biết:
M=1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
N=\(\frac{1}{1010}+\frac{1}{1011}+.....+\frac{1}{2019}\)
\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
Khi đó \(4A=B-\frac{99}{5^{100}}< B\)
\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)
\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)
\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)
\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)
\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{16}\) ( đpcm )
2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
\(\Rightarrow\left(M-N\right)^3=0\)
Chứng tỏ rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)
Làm theo cách của Trắng nha ,
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\left(Đpcm\right)\)
Ta có: \(\frac{1}{2^2}=\frac{1}{2^2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)
\(=\frac{1}{4}+\frac{2}{4}-\frac{1}{2019}\)
\(=\frac{3}{4}-\frac{1}{2019}\)\(< \frac{3}{4}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)
Điều phải chứng minh
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\)
Ta có:
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
....
\(\frac{1}{2019^2}=\frac{1}{2019.2019}< \frac{1}{2018.2019}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow A< 1-\frac{1}{2019}\)
\(\Rightarrow A< \frac{2018}{2019}\)
đến đây mới thấy mik sai ,xin lỗi
Chứng tỏ rằng;
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2019^2}\)
\(\Rightarrow A=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2019}\right)\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}=\frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\)
đặt A=1/2^2+....+1/2019^2
vì 1/2^2+....+1/2019^2<1/1.2+1/2.3+....+1/2018.2019
=> A<1/1-1/2+1/2-1/3+.....+1/2018-1/2019
=> A<1-1/2019=2018/2019<3/4.
=> A<3/4.
vậy 1/2^2+....+1/2019^2<3/4
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{2018}{2019}\)
Mà: \(\frac{3}{4}=\frac{2016}{2688}< \frac{2017}{2688}< \frac{2017}{2019}< \frac{2018}{2019}\)
\(\Rightarrow\frac{3}{4}< \frac{2018}{2019}\)