Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Vân Anh
Xem chi tiết
Nguyễn Kim Long
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
14 tháng 8 2019 lúc 7:33

\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)

\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)

Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)

\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)

\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)

\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)

\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)

\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)

tran bao trung
Xem chi tiết
Toàn Mai
14 tháng 9 2020 lúc 21:51

Đề sai r bạn phải là \(2020\sqrt{2019}\)

Khách vãng lai đã xóa
Fenny
Xem chi tiết
Nguyễn Ngọc Anh Minh
25 tháng 9 2020 lúc 11:02

a/

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(A=2A-A=1-\frac{1}{2^{100}}< 1\)

b/

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)

Khách vãng lai đã xóa
Gia Thành Ngô
Xem chi tiết
Thanh Tùng DZ
Xem chi tiết
Nguyễn Văn Anh Kiệt
16 tháng 3 2018 lúc 21:02

CTv mà cũng đi hỏi ak :v

Uyên
16 tháng 3 2018 lúc 21:05

Nguyễn Văn Anh Kiệt 

CTV thì vẫn đc hỏi!! Chỉ những thằng não ngắn mới nghĩ như vậy~~

ko lm đc thì ra chỗ khác cho ng` giỏi làm =))

Nguyễn Văn Anh Kiệt
16 tháng 3 2018 lúc 21:06

Làm đc ko mà nói ghê z

nguyen ngoc son
Xem chi tiết
Y
18 tháng 4 2019 lúc 15:46

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

Khi đó \(4A=B-\frac{99}{5^{100}}< B\)

\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)

\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{16}\) ( đpcm )

Y
18 tháng 4 2019 lúc 15:39

2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

\(\Rightarrow\left(M-N\right)^3=0\)

Nguyễn Dương
Xem chi tiết
Trắng_CV
23 tháng 5 2018 lúc 10:07

Làm theo cách của Trắng nha , 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\left(Đpcm\right)\)

kudo shinichi
23 tháng 5 2018 lúc 10:15

Ta có:  \(\frac{1}{2^2}=\frac{1}{2^2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ...................

             \(\frac{1}{2019^2}< \frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)

\(=\frac{1}{4}+\frac{2}{4}-\frac{1}{2019}\)

\(=\frac{3}{4}-\frac{1}{2019}\)\(< \frac{3}{4}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)

                                              Điều phải chứng minh

💛Linh_Ducle💛
23 tháng 5 2018 lúc 10:21

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\)

Ta có:

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

....

\(\frac{1}{2019^2}=\frac{1}{2019.2019}< \frac{1}{2018.2019}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow A< 1-\frac{1}{2019}\)

\(\Rightarrow A< \frac{2018}{2019}\)

đến đây mới thấy mik sai ,xin lỗi

nana Nguyễn
Xem chi tiết
Kiên-Messi-8A-Boy2k6
22 tháng 5 2018 lúc 10:58

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2019^2}\)

\(\Rightarrow A=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}=\frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\)

\(\Rightarrow A< \frac{3}{4}\)

Nguyệt
22 tháng 5 2018 lúc 10:56

đặt A=1/2^2+....+1/2019^2

vì 1/2^2+....+1/2019^2<1/1.2+1/2.3+....+1/2018.2019

=> A<1/1-1/2+1/2-1/3+.....+1/2018-1/2019

=> A<1-1/2019=2018/2019<3/4.

=> A<3/4. 

vậy 1/2^2+....+1/2019^2<3/4

nguyen thi bao tien
22 tháng 5 2018 lúc 11:12

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{2018}{2019}\)

Mà: \(\frac{3}{4}=\frac{2016}{2688}< \frac{2017}{2688}< \frac{2017}{2019}< \frac{2018}{2019}\)

\(\Rightarrow\frac{3}{4}< \frac{2018}{2019}\)