Chứng tỏ S=\(16^{20}-2^{74}⋮63\)
chứng tỏ S=16^20 - 2^74 chia hết cho 63
tk
S=1620-274
=(24)20-274
=280-274=274.26-274=274.(26-1)=274.63 chia hết cho 63
=>S chia hết cho 63(đpcm)
Chứng tỏ S=1620-274 chia hết cho 63
Nhầm thực ra bài toán là :
Cho A=1-1/2+1/3-1/4+1/5-1/6+.....+1/99-1/100. Chứng tỏ 7/12<A<5/6
Giải đầy đủ cho mình nhé
Tìm x,y nguyên dương để x+1 chia hết cho y và y+2 chia hết cho x
CM S=1620-274 chia hết cho 63
S=1620-274
=(24)20-274
=280-274=274.26-274=274.(26-1)=274.63 chia hết cho 63
=>S chia hết cho 63(đpcm)
S=1/11+1/12+1/13+1/14+1/15+1/16+...+1/19+1/20
chứng tỏ S>1/2
Ta có: 1/20<1/11
1/20<1/12
...
=> 1/20+1/20+..+1/20 < 1/11+1/12+...+1/20
=> 1/20.10<1/11.1/12+1/13+...+1/20
=> 1/2< 1/11+1/12+1/12+1/13+...+1/20
=> 1/2<S (đpcm)
k mik nhé các bạn. Thanks you nhé ^_<
Chứng tỏ S=1/16+1/17+1/18+1/29+1/20<1/3
\(S< \dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
Chứng tỏ rằng S=1/2+1/3+1/4+...+1/63 >2
bạn hãy áp dụng và like nha
Chứng minh rằng: 1 + 1/2 + 1/3 + 1/4 +...+ 1/63 < 6?
trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N*
Thật vậy vì k thuộc N*nên ta có
k+1=k+1=>1/(k+1)= 1/(k+1)
k+2>k+1=>1/(k+2)<1/(k+1)
k+3>k+1=>1/(k+3)< 1/(k+1)
…
k+n>k+1=>1/(k+n)< 1/(k+1)
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) )
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)
<n/(k+1)
…………………………
Áp dụng bài toán trên ta có
1=1
1/2+1/3
=1/(1+1)+1/(1+2)
<2/(1+1)=2/2=1
1/4+1/5+1/6+1/7
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4)
<4/(3+1)=4/4=1
1 / 8 +1/9 ... +1/15
=1/(7+1)+1/(7+2)+…+1/(7+8)
<8/(7+1)=8/8=1
1/16+1/17+..+1/31
=1/(15+1)+1/(15+2)+….+1/(15+16)
<16/(15+1)=16/16=1
1/32+1/33+…+1/63
=1/(31=1)+1/(32+1)+…+1/(31+32)
<32/(31+1)=32/32=1
=>1 / 2 + 1 / 3+…+1/63<1+1+1+1+1+1
=>1 / 2 + 1 / 3+…+1/63<6 (đpcm)
Chứng tỏ rằng
S = 1/2 + 1/3 + 1/4 + ...+ 1/63 > 2
Cho S = 1/11 + 1/12 + 1/13 + 1/14 + ...+ 1/20 . Hãy so sánh S và 1/2
Tìm n để : 2/1.3 + 2/3.5 + 2/5.7+ ...+ 2/n(n+2) < 2003/2004
Cho S=1/5^2+2/5^3+...+99/5^100.Chứng tỏ rằng S<1/16
Lời giải:
$S=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}$
$5S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{99}{5^{99}}$
$5S-S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}$
$4S+\frac{99}{5^{100}}=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}$
$5(4S+\frac{99}{5^{100}})=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}$
$5(4S+\frac{99}{5^{100}})-(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$
$4(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$
$16S=1-\frac{1}{5^{99}}-\frac{99.4}{5^{100}}<1$
$\Rightarrow S< \frac{1}{16}$
Chứng tỏ: S= 16^5+2^15 chia hết cho 33
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33