Tìm GTNN của A = \(\left|x+5\right|+\left|y-8\right|+2000\)
Tìm gtnn của biểu thức
\(A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
Ta có tính chất :
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)
\(\rightarrow A\ge\left|4x-8\right|\)
Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :
\(\rightarrow A\ge0\forall x\in R\)
Dấu "= " xảy ra khi :
\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{min}=0\Leftrightarrow x=2\)
Tìm GTNN của
\(C=-\left(-5^3\right)+\left|-y-3\right|^9+\left(x-3y\right)^8\)
Ta có:\(\left|-y-3\right|^9\ge0;\left(x-3y\right)^8\ge0\)
\(\Rightarrow C=-\left(-5^3\right)+\left|-y-3\right|^9+\left(x-3y\right)^8\ge-\left(-5^3\right)=125\)
Đẳng thức xảy ra khi: \(\left|-y-3\right|^9=0\Rightarrow-y-3=0\Rightarrow y=-3;\left(x-3y\right)^8=0\Rightarrow x-3y=0\Rightarrow x-3.\left(-3\right)=0\Rightarrow x=-9\)Vậy giá trị nhỏ nhất của C là 125 khi x = -9 và y = -3
a)Tìm GTLN của \(A=2000\left(x-1\right)^2\)
b)Tìm GTNN của \(B=\left|x-3\right|+5\)
2 câu là tìm GTNN đúng hông bạn :)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(A=2000\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x-1=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(0\) khi \(x=1\)
\(b)\) Ta có :
\(\left|x-3\right|\ge0\)
\(\Rightarrow\)\(B=\left|x-3\right|+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-3\right|=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(B\) là \(5\) khi \(x=3\)
Chúc bạn học tốt ~
Phùng Minh Quân
Câu thứ nhất là tìm GTLN ạ
1/ Tìm GTNN:
a,\(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\)
b,\(\left|3x-7\right|+\left|3x+2\right|+8\)
2/ Tìm x, y:
a, \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
b,\(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
c,\(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)
1) a) \(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}7x=5y\\2z=3y\\xy+yz+xz=2000\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}y\\z=\dfrac{3}{2}y\\xy+yz+xz=2000\end{matrix}\right.\)
Ta có: \(xy+yz+xz=2000\)
\(\Rightarrow\dfrac{5}{7}y^2+\dfrac{3}{2}y^2+\dfrac{15}{14}y^2=2000\)
\(\Rightarrow y^2\left(\dfrac{5}{7}+\dfrac{3}{2}+\dfrac{15}{14}\right)=2000\Leftrightarrow\dfrac{23}{7}y^2=2000\)
Tìm \(y\) và suy ra \(x;z\) là được,Bài này nghiệm khá xấu
b) \(\left|3x-7\right|+\left|3x+2\right|+8=\left|7-3x\right|+\left|3x+2\right|+8\ge\left|7-3x+3x+2\right|+8\ge9+8=17\)Dấu "=" xảy ra khi: \(-\dfrac{3}{2}\le x\le\dfrac{7}{3}\)
2) a)Ta có: \(\left\{{}\begin{matrix}\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\left|y+3\right|+5\ge5\\\dfrac{10}{\left(2x-6\right)^2+2}\le\dfrac{10}{2}=5\end{matrix}\right.\)
Mà theo đề bài: \(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
\(\Rightarrow\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}y=-3\\x=3\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\\\dfrac{6}{\left|y+3\right|+3}\le\dfrac{6}{3}=2\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)
\(\Rightarrow\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}=2\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le3\\y=-3\end{matrix}\right.\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Timg GTNN của các bt:
a. \(A=\left|x-2000\right|+\left|x-2001\right|+\left|x-2002\right|\)
b. \(\sqrt{\left(x-8\right)^2}+\sqrt{\left(x-9\right)^2}+\sqrt{\left(x-10\right)^2}+\sqrt{\left(x+11\right)^2}\)
a) \(\left|x-2000\right|+\left|x-2002\right|=\left|x-2000\right|+\left|2002-x\right|\)
\(\ge\left|x-2000+2002-x\right|=2\) (1)
Dấu "=" \(\Leftrightarrow\left(x-2000\right)\left(2002-x\right)\ge0\)
\(\Leftrightarrow2000\le x\le2002\)
+ \(\left|x-2001\right|\ge0\forall x\). "=" \(\Leftrightarrow x=2001\) (2)
Từ (1) và (2) suy ra \(A\ge2\)
Dấu "=" \(\Leftrightarrow x=2001\)
b) \(B=\left|x-8\right|+\left|x-9\right|+\left|x-10\right|+\left|x+11\right|\)
+ \(\left|x-10\right|+\left|x+11\right|=\left|x+11\right|+\left|10-x\right|\)
\(\ge\left|x+11+10-x\right|=21\) (3)
Dấu "=" \(\Leftrightarrow\left(x+11\right)\left(10-x\right)\ge0\Leftrightarrow-11\le x\le10\)
+ \(\left|x-8\right|+\left|x-9\right|\ge\left|x-8+9-x\right|=1\) (4)
"=" \(\Leftrightarrow\left(x-8\right)\left(9-x\right)\ge0\Leftrightarrow8\le x\le9\)
Từ (3) và (4) suy ra \(B\ge22\)
"=" \(\Leftrightarrow8\le x\le9\)
Tìm GTNN của: A=\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2002\)
B=\(\left(x-1\right)^2+\left(x-3\right)^2\)
C= \(x^2-2x+y^2+7-4y\)
D= \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
Đặt \(x^2-9x+14=y\)
\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)
\(\Leftrightarrow A=y^2-36+2002\)
\(\Leftrightarrow A=y^2+1966\ge1966\)
Dấu "=" xảy ra khi
\(x^2-9x+14=0\)
\(\Leftrightarrow x=2,7\)
Bài 1 : Tìm GTNN của : \(A=\left|x+8\right|+\left|2x+7\right|+\left|3x+6\right|+\left|4x-7\right|+\left|3x-6\right|+\left|2x-7\right|+\left|x-8\right|-100\)