Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Băng Băng

Timg GTNN của các bt:

a. \(A=\left|x-2000\right|+\left|x-2001\right|+\left|x-2002\right|\)

b. \(\sqrt{\left(x-8\right)^2}+\sqrt{\left(x-9\right)^2}+\sqrt{\left(x-10\right)^2}+\sqrt{\left(x+11\right)^2}\)

Y
29 tháng 6 2019 lúc 10:27

a) \(\left|x-2000\right|+\left|x-2002\right|=\left|x-2000\right|+\left|2002-x\right|\)

\(\ge\left|x-2000+2002-x\right|=2\) (1)

Dấu "=" \(\Leftrightarrow\left(x-2000\right)\left(2002-x\right)\ge0\)

\(\Leftrightarrow2000\le x\le2002\)

+ \(\left|x-2001\right|\ge0\forall x\). "=" \(\Leftrightarrow x=2001\) (2)

Từ (1) và (2) suy ra \(A\ge2\)

Dấu "=" \(\Leftrightarrow x=2001\)

b) \(B=\left|x-8\right|+\left|x-9\right|+\left|x-10\right|+\left|x+11\right|\)

+ \(\left|x-10\right|+\left|x+11\right|=\left|x+11\right|+\left|10-x\right|\)

\(\ge\left|x+11+10-x\right|=21\) (3)

Dấu "=" \(\Leftrightarrow\left(x+11\right)\left(10-x\right)\ge0\Leftrightarrow-11\le x\le10\)

+ \(\left|x-8\right|+\left|x-9\right|\ge\left|x-8+9-x\right|=1\) (4)

"=" \(\Leftrightarrow\left(x-8\right)\left(9-x\right)\ge0\Leftrightarrow8\le x\le9\)

Từ (3) và (4) suy ra \(B\ge22\)

"=" \(\Leftrightarrow8\le x\le9\)


Các câu hỏi tương tự
Thiên Yết
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Trần Ngọc Tuệ Đình
Xem chi tiết
Quynh Existn
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Phạm Thị Thùy Dương
Xem chi tiết
Quynh Existn
Xem chi tiết
hong doan
Xem chi tiết
Quynh Existn
Xem chi tiết