Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Đình Hải
Xem chi tiết
Nhớ Mãi Mái Trường Xưa
18 tháng 10 2016 lúc 12:10

hình như bạn cho đề sai

Nguyen Đình Hải
18 tháng 10 2016 lúc 12:16

đúng đè mà!

Thanh Tu Nguyen
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2023 lúc 22:29

\(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\)

Do \(x^2+3\ge3;\forall x\)

\(\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\)

\(\Rightarrow B\le1+4=5\)

Vậy \(B_{max}=5\) khi \(x=0\)

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Xuyen Phan
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 18:36

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

nguyen hong son
Xem chi tiết
Nam
20 tháng 10 2015 lúc 18:09

B=(x2+3+12)/(x2+3)=1+12/(x2+3)

B lớn nhất khi x=0 => Bmax= 1+12/3=5

trân đinh chiến
27 tháng 3 2019 lúc 15:03

dell hiểu

Lâm Thị Hạ
Xem chi tiết
Phạm Xuân Trường
4 tháng 2 2017 lúc 20:03

giá trị lớn nhất là 15 khi x=-3

Trương Thanh Nhân
4 tháng 2 2017 lúc 20:00

Giá trị lớn nhất của biểu thức B = 225

Trần Hạnh Mi
4 tháng 2 2017 lúc 20:05

Để nó lớn nhất thì phải trừ cho 0 nên (x+3) mũ 2 phải bằng 0 vậy x = -3.

Vì 15 - 0 = 15 nên giá trị lớn nhất là 15 nhé ^_^

Pham Ngoc Diep
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 19:20

Bài 4:

\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)

Bài 5:

\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)

nguyen van giao
Xem chi tiết
Lê Ngọc Linh
Xem chi tiết
Akai Haruma
25 tháng 8 lúc 21:53

Lời giải:

$B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}$
Ta thấy: $x^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^2+3\geq 3$

$\Rightarrow B=1+\frac{12}{x^2+3}\leq 1+\frac{12}{3}=5$

Vậy $B_{\max}=5$

Giá trị này đạt tại $x^2=0\Leftrightarrow x=0$