Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lindd
Xem chi tiết
Duy Nguyễn Khánh
Xem chi tiết
Akai Haruma
27 tháng 11 2023 lúc 20:22

Lời giải:

a. ĐKXĐ: $x\neq 1$

\(P=\frac{x^2+2}{(x-1)(x^2+x+1)}+\frac{2(x-1)}{(x-1)(x^2+x+1)}-\frac{x^2+x+1}{(x-1)(x^2+x+1)}\)

\(=\frac{x^2+2+2x-2-x^2-x-1}{(x-1)(x^2+x+1)}=\frac{x-1}{(x-1)(x^2+x+1)}=\frac{1}{x^2+x+1}\)

b.

$x^2-x=0\Leftrightarrow x(x-1)=0$

$\Leftrightarrow x=0$ hoặc $x=1$

Vì $x\neq 1$ theo ĐKXĐ nên $x=0$

Khi đó: $P=\frac{1}{0^2+0+1}=1$
c.

Ta thấy:

$1>0$

$x^2+x+1=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $x\neq 1$

$\Rightarrow P=\frac{1}{x^2+x+1}>0$

Hay $P$ luôn dương với mọi $x\neq 1$

:3 Kookiee
Xem chi tiết
mylyyyy
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 8 2021 lúc 16:34

\(a,P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\left(x\ge0;x\ne4\right)\\ P=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\\ P=\dfrac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(b,\)Ta có \(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

Thay vào \(P\), ta được:

\(P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+2}{\sqrt{\left(\sqrt{5}-1\right)^2}-2}=\dfrac{\sqrt{5}-1+2}{\sqrt{5}-1-2}=\dfrac{\sqrt{5}+1}{\sqrt{5}-3}\)

\(c,\)Để \(P< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}< 1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-2}< 0\\ \Leftrightarrow\sqrt{x}-2< 0\left(4>0\right)\\ \Leftrightarrow\sqrt{x}< 2\\ \Leftrightarrow x< 4\)

Vậy để \(P< 1\) thì \(x< 4\)

Tick nha

Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 23:02

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\)

\(=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:

\(P=\dfrac{\sqrt{5}+1+2}{\sqrt{5}+1-2}=\dfrac{3+\sqrt{5}}{\sqrt{5}+1}=\dfrac{1+\sqrt{5}}{2}\)

Tommiseomi
Xem chi tiết
loan lê
2 tháng 7 2023 lúc 18:37

`a)->` ĐKXĐ : `x>=0;x\ne1`

`b)` Ta có :

`P=(\sqrtx)/(\sqrtx-1)-(2\sqrtx)/(\sqrtx+1)+(x-3)/(x-1)`

`P=(\sqrtx(\sqrtx+1)-2\sqrtx(\sqrtx-1)+x-3)/(x-1)`

`P=(x+\sqrtx-2x+2\sqrtx+x-3)/(x-1)`

`P=(3\sqrtx-3)/(x-1)`

`P=(3(\sqrtx-1))/((\sqrtx-1)(\sqrtx+1))`

`P=3/(\sqrtx+1)`

Vậy `P=3/(\sqrtx+1)` khi `x>=0;x\ne1`

⭐Hannie⭐
2 tháng 7 2023 lúc 18:41

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\\ =\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}-2x+2\sqrt{x}+x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\\)

\(=\dfrac{3}{\sqrt{x}+1}\)

Bổ sung \(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\)

Nguyễn Thị Quế Chi
Xem chi tiết
Nguyễn Huy Tú
15 tháng 6 2021 lúc 19:55

a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)

\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)

b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)

\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)

Khách vãng lai đã xóa
Ok Yeong
Xem chi tiết
Minh Nguyễn
Xem chi tiết
nguyen van giao
Xem chi tiết