p=(1+1trên căn x-1)nhân 1tren căn x-1
a, tìm đkxđ và rút gọn
b, tìm giá trị của p tại x=25
cho p= [(3/x-1)+(1/ căn x +1)] : 1/căn x +1
a) tìm dkxd, rút gọn p
b) tìm giá trị p khi x=3+ 2 căn 2
c) tìm giá trị của x để p<0
d) tìm gtnn của M= (x+12/ căn x -1)*1/p
p= x^2+2/x^3-1 + 2/x^2+x+1 - 1/x-1
a) Tìm điều kiện xác định và rút gọn
b) Tính giá trị của P biết x^2 - x =0
c) C/m rằng P luôn dương
Giúp với mình đang gấp
Lời giải:
a. ĐKXĐ: $x\neq 1$
\(P=\frac{x^2+2}{(x-1)(x^2+x+1)}+\frac{2(x-1)}{(x-1)(x^2+x+1)}-\frac{x^2+x+1}{(x-1)(x^2+x+1)}\)
\(=\frac{x^2+2+2x-2-x^2-x-1}{(x-1)(x^2+x+1)}=\frac{x-1}{(x-1)(x^2+x+1)}=\frac{1}{x^2+x+1}\)
b.
$x^2-x=0\Leftrightarrow x(x-1)=0$
$\Leftrightarrow x=0$ hoặc $x=1$
Vì $x\neq 1$ theo ĐKXĐ nên $x=0$
Khi đó: $P=\frac{1}{0^2+0+1}=1$
c.
Ta thấy:
$1>0$
$x^2+x+1=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $x\neq 1$
$\Rightarrow P=\frac{1}{x^2+x+1}>0$
Hay $P$ luôn dương với mọi $x\neq 1$
{ [ ( căn x) / ( căn x -1 ) ] +[ ( căn x) / ( căn x -1 ) ] } : { (2/x) - [(2-x) / ( x nhân căn x +x )] }
a) Rút gọn
b) Tìm giá trị nhỏ nhất
cho p=[(1/ căn x -2)-(1/ căn x +2)] * ( căn x +2/2)^2
a) tìm đkxđ, rút gọn p
b) tính gtri của p khi x= 6- 2 căn 5
c) tìm x để p<1
\(a,P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\left(x\ge0;x\ne4\right)\\ P=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\\ P=\dfrac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
\(b,\)Ta có \(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)
Thay vào \(P\), ta được:
\(P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+2}{\sqrt{\left(\sqrt{5}-1\right)^2}-2}=\dfrac{\sqrt{5}-1+2}{\sqrt{5}-1-2}=\dfrac{\sqrt{5}+1}{\sqrt{5}-3}\)
\(c,\)Để \(P< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-2}< 0\\ \Leftrightarrow\sqrt{x}-2< 0\left(4>0\right)\\ \Leftrightarrow\sqrt{x}< 2\\ \Leftrightarrow x< 4\)
Vậy để \(P< 1\) thì \(x< 4\)
Tick nha
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\)
\(=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}+1+2}{\sqrt{5}+1-2}=\dfrac{3+\sqrt{5}}{\sqrt{5}+1}=\dfrac{1+\sqrt{5}}{2}\)
Cho P =(căn x)/(căn x-1)-(2 căn x)/(căn x+1)+(x-3)/(x-1) a) tìm ĐKXĐ b) rút gọn P
`a)->` ĐKXĐ : `x>=0;x\ne1`
`b)` Ta có :
`P=(\sqrtx)/(\sqrtx-1)-(2\sqrtx)/(\sqrtx+1)+(x-3)/(x-1)`
`P=(\sqrtx(\sqrtx+1)-2\sqrtx(\sqrtx-1)+x-3)/(x-1)`
`P=(x+\sqrtx-2x+2\sqrtx+x-3)/(x-1)`
`P=(3\sqrtx-3)/(x-1)`
`P=(3(\sqrtx-1))/((\sqrtx-1)(\sqrtx+1))`
`P=3/(\sqrtx+1)`
Vậy `P=3/(\sqrtx+1)` khi `x>=0;x\ne1`
\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\\ =\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}-2x+2\sqrt{x}+x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\\)
\(=\dfrac{3}{\sqrt{x}+1}\)
Bổ sung \(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\)
cho A= (1/1- căn x + 1/1 + căn x) : (1/1- căn x -1/ 1+ căn x) + 1/1- căn x
a) tìm dkxd và rút gọn A
b. tính giá trị của A khi x= 7+ 4 căn 3
c. với giá trị nào của x thì A đạt giá trị nhỏ nhất
a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)
\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)
\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)
b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)
\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)
B=((cănx +2 / x+2 căn x +1)-(căn 2 -2/ căn x -1 ) ) nhân căn x +1 /căn x
a) Rút gọn
b)tìm x để |B| > -B
c)tìm x để B có giá trị nguyên
Rút gọn biểu thức P P= 1/ căn x+ căn x/ căn x+1÷ 1/căn x+1 - tìm giá trị nhỏ nhất của P
(15 căn x-11/x+2 căn x -3) + ( 3 căn x -2/1- căn x) - ( 2 căn x +3/ căn x +3)
a. rút gọn biểu thức
b. tìm giá trị lớn nhất của biểu thức và giá trị của x tương ứng