CMR 1/4^2+1/6^2+1/8^2+...+1/(2n^2) <1/4
CMR: 1/4^2+1/6^2+1/8^2+...+1/(2n)^2<1/4
Ta có : \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)
= \(\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}\right)\)
< \(\frac{1}{2^2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-\right).n}\right)\)
= \(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
= \(\frac{1}{4}.\left(1-\frac{1}{n}\right)\)
< \(\frac{1}{4}.1=\frac{1}{4}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\left(đpcm\right)\)
CMR : 1/4^2+1/6^2+1/8^2+...+1/(2n)^2
cmr:
1/4^2+1/6^2+1/8^2+....+1/(2n)^2<1/4
1/4^2+1/6^2+1/8^2+....+1/(2n)^2<1/4
CMR : Thì nó bé hơn thì cần gì phải chứng minh nhỉ ?
Vì đầu bài yêu cầu cm=>điều dó phải đúng thì mới có thể cm đc
=>1/4^2+1/6^2+1/8^2+....+1/(2n)^2<1/4
Bài 3 : CMR :1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n lớn hơn hoặc = 2)
Ta có
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)
=> ĐPCM
CMR : S < 1/4 với S = 1/4^2 +1/6^2 + 1/8^2 + ... 1/(2n)^2
\(S=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Ta có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow S< \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\right)\)
\(\Leftrightarrow S< \frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(\Rightarrow S< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\) (đpcm)
cmr:1/42+1/62+1/82+...+1/(2n)2<1/4
1/42+1/62+1/82+...+1/(2n)2
=1/22.22+1/22.32+1/22.42+...+1/22.n2
=1/22.(1/22+1/32+1/42+...+1/n2)<1/22.(1/1.2+1/2.3+1/3.4+...+1/(n-1).n)
<1/4.(1-1/2+1/2-1/3+1/3-1/4+...+1/n-1-1/n)
<1/4.(1-1/n)<1/4
1/42+1/62+1/82+...+1/(2n)2
=1/22.22+1/22.32+1/22.42+...+1/22.n2
=1/22.(1/22+1/32+1/42+...+1/n2)<1/22.(1/1.2+1/2.3+1/3.4+...+1/(n-1).n)
<1/4.(1-1/2+1/2-1/3+1/3-1/4+...+1/n-1-1/n)
<1/4.(1-1/n)<1/4
cmr:1\42+1\62+1\82+...+1\(2n)2<1\4
CMR:
(1/42)+(1/62)+(1/82)+...+(1/(2n)2)<1/4
CMR \(N=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\)
Lời giải:
Ta có:
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{(2n)^2}< \frac{1}{4^2-1}+\frac{1}{6^2-1}+\frac{1}{8^2-1}+...+\frac{1}{(2n)^2-1}(*)\)
Mà:
\(\frac{1}{4^2-1}+\frac{1}{6^2-1}+\frac{1}{8^2-1}+...+\frac{1}{(2n)^2-1}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{(2n-1)(2n+1)}\)
\(=\frac{1}{2}\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2n-1}-\frac{1}{2n+1}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2n+1}\right)\)
\(< \frac{1}{6}< \frac{1}{4}(**)\)
Từ \((*);(**)\Rightarrow N< \frac{1}{4}\) (đpcm)