Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn
Xem chi tiết
phan tuấn anh
Xem chi tiết
phan tuấn anh
16 tháng 1 2016 lúc 20:22

ko phải khó mà là quá khó

Ngô Ngọc Khánh
16 tháng 1 2016 lúc 20:32

cậu kiếm đâu đấy........

phan tuấn anh
16 tháng 1 2016 lúc 20:33

trong đề cô giáo cho mk

phan tuấn anh
Xem chi tiết
Phạm Thế Mạnh
31 tháng 1 2016 lúc 22:54

đặt đúng theo thứ tự đề bài là a;b;c;d(a;c>0)
\(\Rightarrow a^2+b^3=c^2+d^3\)
theo đề bài ta có: a-b=c-d=>a-c=b-d
ta đc hpt:\(\int^{a^2+b^3=c^2+d^3}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d^2+bd+b^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c+b^2+b+d^2\right)=0\left(1\right)}_{a-c=b-d}\)
\(b^2+bd+d^2=\left(b+\frac{1}{2}d\right)^2+\frac{3}{4}d^2\ge0\)
Dấu "=" xảy ra <=> b=d=0
vì a;c>0 nên a+c>0
Dấu "=" xảy ra <=> a=c=0
=> \(a+c+b^2+bc+d^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=d=0 -> vô nghiệm
Từ (1) => a=c rồi tự làm tiếp
 

Nguyễn Quang Thành
31 tháng 1 2016 lúc 22:20

Giải phương trình ra nhé phantuananh

Phạm Thế Mạnh
31 tháng 1 2016 lúc 22:39

Đặt a,b,b,c theo thứ tự nhé
\(a-b=c-d;a^2+b^3=c^2+d^3\)
\(a-c=b-d;\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c+b^2+bd+d^2\right)=0\)
\(a-c=0\)vì cái kia >0 nhưng dấu "=" xảy ra không đồng thời với giác trị của x
Tự giải tiếp
\(\)

Nguyễn Tuấn
Xem chi tiết
Minh Triều
9 tháng 6 2016 lúc 20:05

Đặt ẩn phụ giải hệ nhỉ 

Nguyệt Hà
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
alibaba nguyễn
30 tháng 8 2017 lúc 15:26

Áp dụng phương pháp tập thể dục

\(2-\frac{x-1}{x}=\left(\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\right)^2\)

\(\Leftrightarrow\frac{x+1}{x}=\frac{\sqrt[3]{\left(2x^2+x^3\right)^2}+2\left(x+2\right)\sqrt[3]{2x^2+x^3}+\left(x+2\right)^2}{\left(2x+1\right)^2}\)

\(\Leftrightarrow\sqrt[3]{\left(2x^2+x^3\right)^2}+2\left(x+2\right)\sqrt[3]{2x^2+x^3}+\left(x+2\right)^2-\frac{\left(x+1\right)\left(2x+1\right)^2}{x}=0\)

\(\Leftrightarrow\left(\sqrt[3]{\left(2x^2+x^3\right)^2}-1\right)+2\left(x+2\right)\left(\sqrt[3]{2x^2+x^3}-1\right)+1+2\left(x+2\right)+\left(x+2\right)^2-\frac{\left(x+1\right)\left(2x+1\right)^2}{x}=0\)

\(\Leftrightarrow\frac{\left(x^2+x-1\right)\left(x^4+3x^3+2x^2+x+1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^4}+\sqrt[3]{\left(2x^2+x^3\right)^2}+1}+\frac{2\left(x+2\right)\left(x+1\right)\left(x^2+x-1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^2}+\sqrt[3]{2x^2+x^3}+1}+\frac{\left(1-3x\right)\left(x^2+x-1\right)}{x}=0\)

\(\Leftrightarrow\left(x^2+x-1\right)\left(\frac{\left(x^4+3x^3+2x^2+x+1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^4}+\sqrt[3]{\left(2x^2+x^3\right)^2}+1}+\frac{2\left(x+2\right)\left(x+1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^2}+\sqrt[3]{2x^2+x^3}+1}+\frac{\left(1-3x\right)}{x}\right)=0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

Lyzimi
30 tháng 8 2017 lúc 15:31

@@ hoa mắt alibaba nguyễn

Ngọc Khánh
1 tháng 9 2017 lúc 9:19
oijoiu8bgyio8g7i8uhigy6ggyuggggp
Lê Đức Anh
Xem chi tiết
❤NgocAnh❤
12 tháng 7 2020 lúc 8:09

Bạn vào link này để xem bài làm của mik nha

large_1594515830440.jpg (768×1024)

Khách vãng lai đã xóa
❤NgocAnh❤
12 tháng 7 2020 lúc 8:09

Mik ko gửi đc link , ib riêng nhé

Khách vãng lai đã xóa
Nguyễn Linh Chi
13 tháng 7 2020 lúc 16:58

Câu 1: 

ĐK: x  khác 0 

TH1: x > 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)ta có phương trình: 

\(\frac{1}{t}+\frac{t^2-1}{2}=2\)

<=> \(t^3-5t+2=0\)

<=> \(\)\(t=2\) (  có 3 nghiệm; loại 2 nghiệm vì  t > 1 ) 

Với t = 2 ta có: \(\sqrt{1+\frac{1}{x^2}}=2\Leftrightarrow\frac{1}{x^2}=3\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{\sqrt{3}}\left(tm\right)\\x=-\frac{1}{\sqrt{3}}\left(l\right)\end{cases}}\)

TH2: x < 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{-1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)

Ta có phương trình: \(-\frac{1}{t}+\frac{t^2-1}{2}=2\)<=> \(t=1+\sqrt{2}\)

khi đó: \(\sqrt{1+\frac{1}{x^2}}=1+\sqrt{2}\)

<=> \(1+\frac{1}{x^2}=1+2\sqrt{2}+2\)

<=> \(x^2=\frac{1}{2\sqrt{2}+2}\)

<=> \(x=-\sqrt{\frac{1}{2\sqrt{2}+2}}\)( thỏa mãn) hoặc \(x=\sqrt{\frac{1}{2\sqrt{2}+2}}\) loại 

Kết luận:...

Khách vãng lai đã xóa
Phi DU
Xem chi tiết
Nguyễn Quang Định
6 tháng 2 2017 lúc 10:43

1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~

\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

Nguyễn Quang Định
6 tháng 2 2017 lúc 10:45

Mấy bài kia sao cái phương trình dài thê,s giải sao nổi

Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết