Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Diệp
Xem chi tiết
Bạn Của Nguyễn Liêu Hóa
8 tháng 3 2019 lúc 23:05

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

Trần Lê Anh Quân
Xem chi tiết
Hải Đăng
Xem chi tiết
Akai Haruma
22 tháng 7 2017 lúc 17:27

Bài 1:

Biến đổi tương đương thôi:

\((ac+bd)^2+(ad-bc)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=(a^2+b^2)(c^2+d^2)\)

Ta có đpcm

Bài 2: Áp dụng kết quả bài 1:

\((a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2\geq (ac+bd)^2\) do \((ad-bc)^2\geq 0\)

Dấu bằng xảy ra khi \(ad=bc\Leftrightarrow \frac{a}{c}=\frac{b}{d}\)

Trần Nhật Giang
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
Nông Phương Uyên
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 5 2016 lúc 9:41

Áp dụng bất đẳng thức : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Có thể chứng minh bằng biến đổi tương đương)

được: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(1)

Thay \(a+b=2-c\)và \(a^2+b^2=2-c^2\)vào (1) được: 

\(2\left(2-c^2\right)\ge\left(2-c\right)^2\Leftrightarrow4-2c^2\ge4-4c+c^2\Leftrightarrow3c^2-4c\le0\)

Giải ra được \(0\le c\le\frac{4}{3}\) 

Tương tự với a,b  ta suy ra được điều phải chứng minh.

Bùi Tiến Hùng
Xem chi tiết
tth_new
Xem chi tiết
Cà Bui
1 tháng 6 2019 lúc 14:37

Làm đại nha!

Chuyển vế qua ta có bđt tương đương

\(\left(\frac{a^2}{b}-\frac{2a^2}{b+c}\right)+\left(\frac{b^2}{c}-\frac{2b^2}{c+a}\right)+\left(\frac{c^2}{a}-\frac{2c^2}{a+b}\right)\ge0\)

\(\Leftrightarrow\frac{a^2\left(c-b\right)}{b\left(b+c\right)}+\frac{b^2\left(a-c\right)}{c\left(c+a\right)}+\frac{c^2\left(b-a\right)}{a\left(a+b\right)}\ge0\)(1)

Nhiệm vụ là đi CM Bđt trên

Biến (1) thành dạng: \(S_1\left(c-b\right)^2+S_2\left(a-c\right)^2+S_3\left(b-a\right)^2\ge0\)(2)

trong đó: \(\hept{\begin{cases}S_1=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}\\S_2=\frac{b^2}{c\left(c+a\right)\left(a-c\right)}\\S_3=\frac{c^2}{a\left(a+b\right)\left(b-a\right)}\end{cases}}\)

\(\left(2\right)\Leftrightarrow S_1\left(c-b\right)^2-S_2\left[\left(c-b\right)+\left(b-a\right)\right]^2+S_3\left(b-a\right)^2\ge0\)

\(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2-2\left(c-b\right)\left(b-a\right)S_2\ge0\)

hay \(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2+2\left(c-b\right)\left(b-a\right)\left(-S_2\right)\ge0\)(3)

Tới đây cần chứng minh (3) đúng

Xét: \(S_1-S_2=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}-\frac{b^2}{c\left(c+a\right)\left(a-c\right)}=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}+\frac{b^2}{c\left(c+a\right)\left(c-a\right)}>0\)(do từ gt)

Xét \(S_3-S_2=.....>0\)(tương tự làm nha)

Xét \(-S_2=\frac{b^2}{c\left(a+c\right)\left(c-a\right)}>0\)

Có: \(\hept{\begin{cases}S_1-S_2>0\\S_3-S_2>0\\-S_2>0\end{cases}}\)Suy ra (3) đúng

Suy ra (2) và (1) cũng đúng 

Vậy .........

Không biết đúng không

Trần Phúc Khang
1 tháng 6 2019 lúc 15:28

bạn làm nhầm rồi 

Đoạn \(\left(2\right)\Leftrightarrow....+S_2\)bạn ghi thành \(\Leftrightarrow...-S_2\)

Trần Phúc Khang
1 tháng 6 2019 lúc 15:56

Ta có \(\frac{2a^2}{b+c}\le\frac{1}{2}a^2\left(\frac{1}{b}+\frac{1}{c}\right)\)(do \(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Khi đó Bất đẳng thức 

<=>\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

<=> \(a^3c+b^3a+c^3b\ge a^3b+b^3c+c^3a\)

<=> \(\left(a^3c-ac^3\right)+\left(b^3a-b^3c\right)+\left(c^3b-a^3b\right)\ge0\)

<=> \(\left(a-c\right)\left[ac\left(a+c\right)+b^3-b\left(a^2+ac+c^2\right)\right]\ge0\)

<=> \(\left(a-c\right)\left[\left(a^2c-ba^2\right)+\left(ac^2-abc\right)+\left(b^3-bc^2\right)\right]\ge0\)

<=> \(\left(a-c\right)\left(c-b\right)\left[a^2+ac-b\left(b+c\right)\right]\ge0\)

<=> \(\left(a-c\right)\left(c-b\right)\left(a-b\right)\left(a+b+c\right)\ge0\)luôn đúng với giả thiết