Cho x = 2017. Tính giá trị của đa thức
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-2018x^{2015}+...+2018x^2-2018x+1\)
Tính P (2017) biết rằng:
P (x)=x^2017- 2018x^2016+2018x^2015-2018x^2014+...-2018x^2+2018x-1
GIÚP MÌNH VỚI!!!!PLEASE!!!!😖😖😖
P(x)= x^2017 - 2018x^2016+ 2018x^2015+...-2018x^2 + 2018x-1
=> P(x)= x^2017 -2017x^2016-x^2016 + 2017x^2015 + x^2015+..-2017x^2-x^2 + 2017x+x-1
=> P(x)= x^2016(x-2017) -x^2015(x-2017)+...- x(x -2017)+ x-1
thay x=2017 vào p(x) ta được
p(2017)= 2016
tính giá trị của biểu thức B=2018x^100 + 2018x^99 + 2018x^98 + ... + 2018x^2 + 2018x . Tại x = 2017
giải chi tiết đúng giúp mk vs
mk tick cho
Cho x \(=\)2017, Tính giá trị biểu thức
A\(=\)\(x^9-2018x^8+2018x^7-2018x^6+2018x^5-2018x^4-2018x^3-2018x^2+2018x-2018\)
\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)
\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)
\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)
\(A=-1\)
Mk sửa lại đề. bn tham khảo nha!!!
\(x=2017\)\(\Rightarrow\)\(x+1=2018\)
Ta có: \(A=x^9-2018x^8+2018x^7-2018x^6+2018x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\)
\(=x^9-x^9-x^8+x^8+x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\)
\(=1\)
tính đi đã thức hay đơn thức ý các bạn hộ mình với ạ!!!mơn@@
F=x^11-2018x^10-2018x^9-2018x^8-2018x^7-...-2018x-2017 với x=2105 ( hình như x=2017 hay sao ý ạ)
cho A= x10 - 2018x9+2018x8-2018x7+2018x6-....-2018x+2018
Tính giá trị của biểu thức A tại x=2017
CÁC BẠN GIẢI GIÚP HỘ MÌNH, MÌNH CẦN GẤP Ạ!
CẢM ƠN Ạ!!
Vì \(x=2017\Rightarrow x+1=2018\)
Thay \(x+1=2018\)vào biểu thức A ta được :
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)
\(=1\)
Tại x=2017 thì 2018 = x + 1
Khí đó \(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)
\(=1\)
tinh p=x\(^{15}\)-2018x\(^{14}\)+2018x\(^{13}\)-2018x\(^{12}\)+...+2018x\(^3\)-2018x\(^2\)+2018x-2018 ;voi x=2017
Ta có: x=2017
nên x+1=2018
Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)
\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)
=-1
F(x)=x7-2018x6+2018x5-2018x4+2018x3-2018x2+2018x+1 Với x=2017
F(x)=\(x^7-2018x^6+2018x^5-2018x^4+2018x^3-2018x^2+2018x+1.\)
x=2017=>2018=x+1 thay vào F(x) ta có:
F(x)=x+1=2018
Tính các giá trị biểu thức sau:
a) \(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\) biết x=2017
b) \(B=2x^5+5y^3+4\) tại x,y thỏa mãn \(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
a)\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2019\)
\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2019\)
\(A=x-2019=2017-2019=-2\)
b)ta có:\(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay vào \(\Rightarrow B=2\cdot\left(-1\right)^5+5\cdot\left(-2\right)^3+4\)
\(B=-2+\left(-40\right)+4=-38\)
thục hiền đc đó thục hiền ak nay vẫn hoc24 bình thường à
Ta có x=2017 => 2018 = x+1 ; 2019= x+2
thay vào ta có : \(A=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-\left(x+2\right)\) \(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^x+x-x-2\) \(=\left(x^5-x^5\right)+\left(-x^4+x^4^{ }\right)+\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x\right)-2\)=-2
ey học tốt nhá
Tính giá trị của biểu thức: Q(x)= x\(^{32}-2018x^{31}\) + \(2018x^{30}-2018x^{29}\) + ..... + 2018x\(^2-2018x+2019\) tại x = 2017
GIÚP MK VS
MK ĐANG CẦN GẤP!!
tối nay mk phải nộp rùi
giúp mk vs!!