Giá trị nhỏ nhất của số tự nhiên n thỏa mãn n<9,67<n+3
biết n là một số tự nhiên và n + 3 chia hết cho n - 1 giá trị nhỏ nhất của n là thỏa mãn là ...........
n + 3 chia hết cho n -1
=>n - 1 + 4 chia hết cho n -1
Vì n - 1 chia hết chia hết cho n -1=>4 chia hết cho n-1
4 chia hết cho 4 ; 2 ;1
Mà n nhỏ nhất => n - 1 = 1
Vậy n = 1 + 1 = 2
biết n là một số tự nhiên và n + 3 chia hết cho n - 1 giá trị nhỏ nhất của n là thỏa mãn là 2
Thử lại :
n + 3 = 2 + 3 = 5
n - 1 = 2 - 1 = 1
5 chia hết cho 1
Cho n là một số tự nhiên nhỏ hơn 10.
Số các giá trị của n thỏa mãn
n={0,1,2,3,4,5,6,7,8,9}
Vậy n có 9 giá trị thỏa mãn.
Ai thấy đúng thì k cho mình nha!!!Cảm ơn mọi người nhiều.
số tự nhiên n thỏa mãn n lớn hơn hoặc bằng 2 và nhỏ hơn 10 hoặc bằng 10 để phân số 10n+12/3n+5 có giá trị nhỏ nhất là
làm gấp
B1:1 số tự nhiên A thỏa mãn A chia 25 dư \13 và A chia 4 dư 2 . Tìm 2 chữ số tận cùng của a
B2:cho n số nguyên lẻ a1,a2,...an (n>2007) thỏa mãn a1^2+...+a2005^2=a2006^2+...+an^2 tìm giá trị nhỏ nhất của n và chỉ ra 1 bộ sô a1,a1,...an thỏa mãn tìm được
Cho số tự nhiên x thỏa mãn x/4-2>2,05. Giá trị nhỏ nhất của x là
\(x>4-\dfrac{2}{2.05}\)
mà x là số tự nhiên nhỏ nhất thỏa mãn
nên x=0
tính giá trị nhỏ nhất của của số tự nhiên a thỏa mãn:3/5*a>4
tìm giá trị nhỏ nhất của số tự nhiên a thỏa mãn : 3/5 * a > 4
\(\frac{3}{5}.a>4\)
\(\Rightarrow a>4:\frac{3}{5}\)
\(\Rightarrow a>\frac{20}{3}>6\)
Vì a>6 mà a nhỏ nhất nên a=7
nha
Cho các số tự nhiên x,y thỏa mãn x+y=101
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức T=\(x^2-xy+y^2\)
Có xy ≤ 1/4 (x+y)^2
=> 3xy ≤ 3/4 (x+y)^2
=> T = x^2-xy+y^2 = (x+y)^2 - 3xy ≥ (x+y)^2 - 3/4 (x+y)^2 = 1/4 (x+y)^2
=10201/4
Dấu = xảy ra khi x=y=101/2
T = (x+y)^2 - 3xy <= (x+y)^2 = 101^2 = 10201
Dấu = xảy ra khi 1 số = 0, 1 số = 101
là số nguyên tố
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp