Giải pt sau với \(\alpha\)là tham số ; x là ẩn
\(\alpha\frac{9x^8+84x^6+126x^4+36x^2+1}{x^8+36x^6+126x^4+84x^2+9}+x\frac{9\alpha^8+84\alpha^6+126\alpha^4+36\alpha^2+1}{\alpha^8+36\alpha^6+126\alpha^4+84\alpha^2+9}=0\)
Xét dãy số \(\left\{x_n\right\}^{+\infty}_{n=1}\) như sau: \(x_1=1\) và với mọi \(n=1,2,...\) thì
\(x_{n+1}=\dfrac{\left(2+\cos\alpha\right)x_n+\cos^2\alpha}{\left(2-2\cos2\alpha\right)x_n+2-2\cos2\alpha}\),
trong đó \(\alpha\) là một tham số thực. Tìm tất cả các giá trị của \(\alpha\) để dãy số \(\left\{y_n\right\}\), với \(y_n=\sum\limits^n_{k=1}\dfrac{1}{2x_k+1},\forall n=1,2,...\) có giới hạn hữu hạn khi \(n\rightarrow+\infty\). Hãy tìm giới hạn của dãy số \(\left\{y_n\right\}\) trong các trường hợp đó.
Ta có xn luôn dương
Ta có \(2x_n+1=\) \(2\times\dfrac{\left(2+cos\alpha\right)x_n+cos^2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}+1=\)
\(=\dfrac{6x_n+2cos^2\alpha+2-cos2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}\)
\(=\dfrac{6x_n+2cos^2\alpha+2sin^2a+1}{\left(2x_n+1\right)\left(1-cos2\alpha\right)+1}\)
\(=\dfrac{3\left(2x_n+1\right)}{2\sin^2\alpha\left(2x_n+1\right)+1}\)
\(\Rightarrow\dfrac{1}{2x_{n+1}+1}=\dfrac{2\sin^2\alpha\left(2x_n+1\right)+1}{3\left(2x_n+1\right)}\)
\(=\dfrac{1}{3}\left(2\sin^2\alpha+\dfrac{1}{2x_n+1}\right)\)
\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\dfrac{1}{3}\left(\dfrac{1}{2x_n+1}-\sin^2\alpha\right)\)
\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{2x_1+1}-\sin^2\alpha\right)\)
\(=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{3}-\sin^2\alpha\right)\)
\(\Rightarrow y_n=\sum\limits^{n-1}_{i=0}\left(\dfrac{1}{3}\right)^i\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)
\(=\dfrac{1-\left(\dfrac{1}{3}\right)^n}{1-\dfrac{1}{3}}\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)
\(=\dfrac{3}{2}\left(1-\left(\dfrac{1}{3}\right)^n\right)\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)
Do đó để yn có giới hạn hữu hạn khi \(n\sin^2\alpha\) có giới hạn hữu hạn \(\Leftrightarrow\sin^2\alpha=0\Leftrightarrow\sin\alpha=0\)\(\Leftrightarrow\alpha=k\pi\left(k\inℤ\right)\)
Lúc đó \(\lim\limits_{n\rightarrow+\infty}y_n=\dfrac{1}{2}\)
(Bài này làm như thế nào vậy mn???)
Đường thẳng d: \(x.cos\alpha+y.sin\alpha+2.sin\alpha-3.cos\alpha+4=0\) (với \(\alpha\) là tham số) luôn tiếp xúc với đường tròn nào trong các đường tròn sau đây:
A. Đường tròn tâm I(3;-2), R=4
B. Đường tròn tâm I(-3;-2), R=4
C. Đường tròn tâm I(0;0), R=1
D. Đường tròn tâm I(-3;2), R=4
cho PT x^2 -2(m+1)x+m^2+2=0(m là tham số).giải PT (1) với m=1
Khi m=1 thì pt sẽ là:
x^2-2*2x+1^2+2=0
=>x^2-4x+3=0
=>x=1 hoặc x=3
giải pt với a là tham số :
a(ax+1)=x(a+2)+2
\(a\left(ax+1\right)\text{=}x\left(a+2\right)+2\)
\(\Leftrightarrow a^2x-ax-2x\text{=}2-a\)
\(\Leftrightarrow x\left(a^2-a-2\right)\text{=}2-a\)
\(\Leftrightarrow x\left(a+1\right)\left(a-2\right)\text{=}2-a\)
\(\Leftrightarrow x\text{=}\dfrac{-1}{a+1}\)
em mới có lớp 8 nên là em không chắc nữa
Giúp e giải bài này với ạ! Cảm ơn m.ng!!!
cho PT: x2- (2n -1)x + n.(n-1) = 0 (*) (với n là tham số)
1, giải PT khi n=2 (ko cần làm nhé!)
2, CMR: pt (*) luôn có 2 nghiệm phân biệt với mọi n
3, gọi x1 , x2 là 2 nghiệ của PT (*) với x1 <x2. CMR: x12 -2x2 +3 ≥ 0
b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
pt luôn có 2 nghiệm phân biệt
c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)
\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)
(số bình phương luôn lớn hơn bằng 0) với mọi n
2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
Vậy pt luôn có 2 nghiệm pb
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)
Vì x1 là nghiệm của pt trên nên ta được
\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)
Thay vào ta được
\(2nx_1-x_1-n^2+n-2x_2+3\)
bạn kiểm tra lại đề nhé
Giải pt với m là tham số:
m(mx-2)=x(3m+4)+2
\(m\left(mx-2\right)=x\left(3m+4\right)+2\)
\(m^2x-2m=3mx+4x+2\)
\(m^2x-2m-3mx-4x-2=0\)
\(m\left(mx-2-3x\right)-2\left(2x-1\right)=0\)
\(\orbr{\begin{cases}mx-2-3x=0\\2x-1=0\end{cases}}\)
đến đây tự làm tiếp
Cho họ đường thẳng \(\left(d_{\alpha}\right):\left(x-1\right)\cos\alpha+\left(y-1\right)\sin\alpha-4=0\) (với \(\alpha\) là tham số. Tìm tập hợp tất cả các điểm mà \(\left(d_{\alpha}\right)\) không đi qua với mọi \(\alpha\). Suy ra \(\left(d_{\alpha}\right)\) tiếp xúc với một đường tròn cố định.
(Mình biết đáp án là \(\left(d_{\alpha}\right)\) không đi qua các điểm có tọa độ \(\left(x;y\right)\) sao cho \(\left(x-1\right)^2+\left(y-1\right)^2< 16\) và \(\left(d_{\alpha}\right)\) tiếp xúc với đường tròn \(\left(x-1\right)^2+\left(y-1\right)^2=16\) cố định nhưng mình chưa biết cách để làm)
uhm, bài hay đấy, có thể quay vào toán bất đẳng thức vẽ trên geogebra không?
Cho pt x2 + 2(m+1)x - 2m4 + m2 = 0 (m là tham số)
a) Giải pt khi m = 1
b) Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi m
a)
Thế m = 1 vào PT được: \(x^2+2\left(1+1\right)x-2.1^4+1^2=0\)
<=> \(x^2+4x-1=0\)
\(\Delta=16+4=20\)
\(\left\{{}\begin{matrix}x_1=-2+\sqrt{5}\\x_2=-2-\sqrt{5}\end{matrix}\right.\)
b) đề đúng chưa=)
Giải và biện luận các pt sau:(x là ẩn,m là tham số)
a)7(m-11)x-2x+14=5m
a) 7(m-11)X - 2X + 14 = 5m
<=> ( 7m - 77 - 2 )X = 5m -14
<=> (7m - 79 )X = 5m - 14
TH1: 7m - 79 = 0 <=> m = \(\frac{79}{7}\)
Thay m = \(\frac{79}{7}\), ta có :
0X = 5 x \(\frac{79}{7}\) -14
<=> 0X = \(\frac{297}{7}\)
PT vô nghiệm
TH2: m \(\ne\frac{79}{7}\)
<=> phương trình có nghiệm duy nhất x = \(\frac{5m-14}{7m-79}\)