Tính tổng T = 1 + 3+5+...+(2n-5)+(2n-3)+(2n-1)
Hoàng ơi tiếp
Tính tổng T = 1 + 3 + 5 + ..... + (2n - 5) + (2n - 3) + (2n - 1)
tính tổng dãy số sau: A=2^3+4^3+6^3+...+(2n)^3; B=1^3+3^3+5^3+...+(2n-1)^3
tính tổng gồm 2002 số hạng: S=1*3/3*5+2*4/5*7+...+(n-1)*(n+1)/(2n-1)*(2n+1)+...+1002*1004/1005*1007
tính tổng dãy tính sau
1)1+2+3+...+n
2)1+3+5+...+(2n+1)
3)2+4+6+...+2n
1) \(\frac{n\left(n+1\right)}{2}\)
2) \(\)
Tính tổng dãy số sau
1)1+3+5+...+(2n+1)
2)2+4+6+...+2n
x chia hết cho 20 ; x chia hết 35 và x< 500
24chia hết cho x; 36 chia hết x; 60 chia hết cho x và 1<x<10
2)dãy trên có tất cả:(2n-2):2+1=n(số hạng)
(vì (2n-2):2+1=2(n-1):2+1=n-1+1=n)
2+4+6+...+2n=(2n+2)xn:2=n x( n+1)
câu 1 làm tương tự
1) \(1+3+5+...+\left(2n+1\right)=\left[\left(2n+1\right)+1\right].\left\{\left[\left(2n+1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+2\right).\left(n+1\right):2=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2.\)
2) \(2+4+6+...+2n=\left(2n+2\right).\left[\left(2n-2\right):2+1\right]:2=\left(2n+2\right).n:2\)
\(=\left(n+1\right).n.\)
tính nhanh các tổng sau
1+2+3+.................+n
1+3+5+7+...........................+(2n-1)
2+4+6+.................................+2n
1+2+3+.................+n=(n+1).n/2
1+3+5+7+...........................+(2n-1)=(1+2n-1).n/2=2n.n/2=n.n
2+4+6+.................................+2n=(2n+2).n/2=n.(n+1)
Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
Xét dãy 1 + 3 + 5 + ... + (2n-1)
Nhận xét : Đây là dãy số cách đều 2 đơn vị
Số số hạng: \(\dfrac{\left(2n-1-1\right)}{2}+1=\dfrac{2n-2}{2}+1=n-1+1=n\) (số)
Tổng dãy: \(\dfrac{2n-1+1}{2}.n=n^2\)
a) Số số hạng của dãy số là:
(n-1):1+1=n-1+1=n(số hạng)
Tổng của dãy số là:
\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)
b) Số số hạng của dãy số là:
\(\dfrac{2n-1-1}{2}+1=\dfrac{2n-2}{2}+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(1+2n-1\right)\cdot\dfrac{n}{2}==\dfrac{2n^2}{2}=n^2\)
Xét dãy 1 + 2 + 3 + ... + n
Nhận xét: Đây là dãy số cách đều 1 đơn vị
Số số hang: (n-1):1+1 = n (số)
Tổng dãy số : (n+1).n : 2 = \(\dfrac{n.\left(n+1\right)}{2}\)
Tính tổng: C= 1 + 3 + 5 + ... + (2n+1)
C = 1 + 3 + 5 + ... + (2n + 1)
Dãy số trên là dãy số cách đều với khoảng cách là : 3 - 1 = 2
Số số hạng của dãy số trên là : (2n + 1 - 1) : 2 + 1 = n + 1
C = (2n + 1 + 1)(n + 1) : 2
C = (2n + 2)(n + 1) : 2
C = (n + 1)2
C = 1 + 3 + 5 + ... + (2n + 1)
Dãy số trên là dãy số cách đều với khoảng cách là : 3 - 1 = 2
Số số hạng của dãy số trên là : (2n + 1 - 1) : 2 + 1 = n + 1
C = (2n + 1 + 1)(n + 1) : 2
C = (2n + 2)(n + 1) : 2
C = (n + 1)2
Hok tốt!
Bài 4: Tính các tổng sau:
a) 1 + 2 + 3 + 4 + ...... + n;
b) 2 +4 + 6 + 8 + .... + 2n;
c) 1 + 3 + 5 + ..... (2n + 1);
d) 1 + 4 + 7 + 10 + ...... + 2005;
e) 2 + 5 + 8 +......+ 2006;
g) 1 + 5 + 9 +....+ 2001.
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)