Rút gọn biểu thức: C=(x+y-z)^2+(x-y+z)^2-2(y-z)^2
Mình đang cần gấp cảm ơn mọi người
Rút gọn biểu thức:D=(x+y-z)^2+(x-y-z)^2-2(y-z)^2
Mình cần gấp cảm ơn!
(x-y+z)²+(z-y)²-2(x-y+z)(z-y)
= [(x−y+z)+(y−z)]2[(x−y+z)+(y−z)]2
= (x−y+z+y−z)2(x−y+z+y−z)2
= x2
Rút gọn
(x-y+z)2+(z-y)2+2*(x-y+z)*(y-z)
mọi người giải hẳn ra cho mình nhé, mình đang cần gấp
Tuy z − y ≠ y − z nhưng (z − y)² = (y − z)²,cho nên
bạn có thể thay (z − y)² bằng (y − z)²
P(x,y,z) = (x − y + z)² + (z − y)² + 2(x − y + z)(y − z)
. . . . . . .= (x − y + z)² + (y − z)² + 2(x − y + z)(y − z) . . . . . .= A² + B² + 2AB
. . . . . . .= [(x − y + z) + (y − z)]² . . . . . . . . . . . . . . . . . . . . = (A + B)²
. . . . . . .= (x − y + z + y − z)²
. . . . . . .= x²
k mk nha mk nhanh nhất
bài 4 : tìm x,y thuộc Z, biết
a) (x-5) ( y-7 ) =1
B) ( x+4 ) (y-2) = 2
C) (x+7) ( 5-y ) = -6
D) (12-x ) (6-y) = -2
Mọi người giải giúp mình nhé cảm ơn nhìu mình đang cần gấp
a tìm số nguyên x biết (x-5).(y-7)=1
(x-5).(y-7)=1 = 1.1 = -1.(-1)
TH1,
x-5 = 1, y-7 = 1
=> x = 6, y = 8
TH2
Cho 3 số x,y,z khác 0 thỏa mãn x+y+z=0.Tính C=2.x.(x+y).(z+x)+y.(x+y).(y+z) / 2.(x+z).(y+z) Mình đang cần gấp,cảm ơn các bạn.
Các bạn giúp mình làm bài này với nhé mình cần gấp lắm giải giúp mình trước 5:30 nha cảm ơn các bạn nhìu
Rút gọn biểu thức :
a) (x+y)(x+y)
b) (x-y)(x-y)
c) x(y+z)-y(x-z)
a, 0
b,0
c, 0
mình ko chắc lắm
a/ (x+y)(x+y)
=x+y.x+y
=x+x.y+y
=2.x.2.y
=2.(x+y)
Cho x+y+z=0. Rút gọn biểu thức:
K=\(\dfrac{x^{2}+y^{2}+z^{2}}{(y-z)^{2}+(z-x)^{2}+(x-y)^{2}}\)
Ta có: x+y+z=0
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)
Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)
\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Vậy: \(K=\dfrac{1}{3}\)
\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)
\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)
cho ba số thực x,y,z thỏa mãn điều kiện x+y+z =0 và xyz khác 0 .Tính giá trị biểu thức
P=\(\frac{x^2}{y^2+z^2-x^2}\)\(+\frac{y^2}{z^2+x^2-y^2}+\)\(\frac{z^2}{x^2+y^2-z^2}\)
giúp mình với ạ mình đang cần gấp
cảm ơn các bạn nhiều ạ
- Ta có: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+y^2+2xy=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
- CMT2: \(y^2+z^2-x^2=-2yz\)
\(z^2+x^2-y^2=-2zx\)
- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P
- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)
\(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)
- Đặt \(a=x^3+y^3+z^3\)
- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)
\(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)
- Mặt khác: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a
- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)
- Thay \(a=3xyz\)vào đa thức P
- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)
Vậy \(P=-\frac{3}{2}\)
Rút gọn biểu thức
a,(x+y)2-(x-y)2
b,(x-y-z)2+(x+y+z)2
c,(x+y)2-2(x+y)(x-y)+(x-y)2
\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)
\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)
\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)
Rút gọn biểu thức sau: (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2
(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2
= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)
= z2.