Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Linh
Xem chi tiết

(x-y+z)²+(z-y)²-2(x-y+z)(z-y)

[(x−y+z)+(y−z)]2[(x−y+z)+(y−z)]2

(x−y+z+y−z)2(x−y+z+y−z)2

x2

Khách vãng lai đã xóa
Nguyễn Duy Hưng
Xem chi tiết
nguyentruongan
19 tháng 3 2017 lúc 17:43

Tuy z − y ≠ y − z nhưng (z − y)² = (y − z)²,cho nên 
bạn có thể thay (z − y)² bằng (y − z)² 

P(x,y,z) = (x − y + z)² + (z − y)² + 2(x − y + z)(y − z) 
. . . . . . .= (x − y + z)² + (y − z)² + 2(x − y + z)(y − z) . . . . . .= A² + B² + 2AB 
. . . . . . .= [(x − y + z) + (y − z)]² . . . . . . . . . . . . . . . . . . . . = (A + B)² 
. . . . . . .= (x − y + z + y − z)² 
. . . . . . .= x²

k mk nha mk nhanh nhất

linh phan
Xem chi tiết
Giang シ)
22 tháng 12 2021 lúc 20:59

a  tìm số nguyên x biết (x-5).(y-7)=1 
   (x-5).(y-7)=1 = 1.1 = -1.(-1) 
   TH1,
   x-5 = 1, y-7 = 1
   => x = 6, y = 8
   TH2

  x -5 = -1, y - 7 = -1
=> x = 4, y = 6

 

Vũ Minh Đức
Xem chi tiết
Hoàng Phương Thảo
Xem chi tiết
Trần Lê Việt Hoàng-free...
25 tháng 1 2019 lúc 15:19

a, 0

b,0

c, 0

mình ko chắc lắm

Phạm Khắc Chính
25 tháng 1 2019 lúc 15:20

a/ (x+y)(x+y)

   =x+y.x+y

   =x+x.y+y

   =2.x.2.y

    =2.(x+y)

Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 22:46

Ta có: x+y+z=0

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)

Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)

\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

Vậy: \(K=\dfrac{1}{3}\)

Trần Minh Hoàng
19 tháng 12 2020 lúc 22:47

\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)

\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)

giang
Xem chi tiết
Tạ Đức Hoàng Anh
10 tháng 3 2020 lúc 21:49

- Ta có: \(x+y+z=0\)

      \(\Leftrightarrow x+y=-z\)

      \(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)

      \(\Leftrightarrow x^2+y^2+2xy=z^2\)

      \(\Leftrightarrow x^2+y^2-z^2=-2xy\)

- CMT2\(y^2+z^2-x^2=-2yz\)

             \(z^2+x^2-y^2=-2zx\)

- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P

- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)

     \(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)

- Đặt \(a=x^3+y^3+z^3\)

- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)

           \(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)

- Mặt khác: \(x+y+z=0\)

            \(\Leftrightarrow x+y=-z\)

- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a

- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)

- Thay \(a=3xyz\)vào đa thức P

- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)

Vậy \(P=-\frac{3}{2}\)

Khách vãng lai đã xóa
Xem chi tiết
Dang Tung
19 tháng 6 2023 lúc 18:32

\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)

\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)

\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2019 lúc 3:03

(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2

= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)

= z2.