Tìm GTNN hoặc GTLN:
a, A= /x+2015/+7
b, B= 15-/x-201/
Tìm GTLN hoặc GTLN:
a) `A = (5x^2 - 24x + 32)/(x^2 - 4x + 4)`
b) `B = ( 10x^2 + 24x + 15)/(x^2 + 2x + 1)`
\(A=\dfrac{4\left(x^2-4x+4\right)+\left(x^2-8x+16\right)}{x^2-4x+4}=4+\left(\dfrac{x-4}{x-2}\right)^2\ge4\)
\(A_{min}=4\) khi \(x=4\) (A max ko tồn tại)
\(B=\dfrac{6\left(x^2+2x+1\right)+\left(4x^2+12x+9\right)}{x^2+2x+1}=6+\left(\dfrac{2x+3}{x+1}\right)^2\ge6\)
\(B_{min}=6\) khi \(x=-\dfrac{3}{2}\)
B max ko tồn tại
Tìm GTNN của
a. A= x^2 -5x +7
b. B= 2x^2 - 8x + 15
a) Ta có: \(A=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
b) Ta có: \(B=2x^2-8x+15\)
\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu '=' xảy ra khi x=2
a. `A=x^2-5x+7`
`=x^2-2.x. 5/2 + (5/2)^2 +3/4`
`=(x-5/2)^2 + 3/4`
`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`
b) `B=2x^2-8x+15`
`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`
`=(\sqrt2x-2\sqrt2)^2+7`
`=> B_(min)=7 <=> x=2`.
a) \(A=x^2-5x+7\)
\(=x^2-2.\dfrac{5}{2}x+\left(\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Mặt khác, ta có \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\) \(\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi \(\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(A_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{5}{2}\)
b) \(B=2x^2-8x+15\)
\(=4x^2-2.2x.2+2^2+11\)
\(=\left(2x-2\right)^2+11\)
Vì \(\left(2x-2\right)^2\ge0\forall x\) nên \(\left(2x-2\right)^2+11\ge11\forall x\)
Dấu "=" xảy ra khi \(\left(2x-2\right)^2=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy \(B_{min}=11\) khi \(x=1\)
Tìm GTNN hoặc GTLN:
a, \(A=\frac{x^2+15}{x^2+13}\) b, \(B=\)/ x-1 /+/x-2015/
Tìm GTNN hoặc GTLN:
a, \(A=\frac{x^2+15}{x^2+13}\) b, \(B=\)/ x-1 /+/x-2015/
3. Tìm GTNN: P= l-3x+1l+l2y+2,8l+14,5
4. Tìm GTNN: K= lx-2015l+lx-2016l
1.Tìm x;y:
a) lx+3l=l2-xl b) l2x(x-2)l=x
2. Tìm GTLN:a) C= 1-l-x-3l-l2y-1l
Tìm GTNN, GTLN của:
A=10/ |x+2|+5
B= 15/ 3-|x-1|
C= 2015+ -16/|x-2016|-8
Ta có : \(\left|x+2\right|+5\ge5\forall x\)
Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)
<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)
Vậy Amax = 2 khi x = -2
Tìm GTNN hoặc GTLN
a) C = ( x2 - 2x + 2021)/ x2
b) D = ( x2 - 2x + 2015) / 2015x2
Tìm GTNN:a,A=3|2x+1|-2
b,B=1/3-|x-2| với B>0
Tìm GTLN:a,A=15-3|x-7|
b,B=1/2|x-2|+5
Tìm GTLN
a) Ta có: A = 15 - 3 | x - 7 |
Để A đạt GTLN khi 3 | x - 7 | đạt GTNN
\(\Rightarrow3\left|x-7\right|=0\Rightarrow\left|x-7\right|=0\Rightarrow x-7=0\Rightarrow x=7\)
Vậy để biểu thức đạt GTLN khi A = 15 và x = 7
Tìm GTNN hoặc GTLN
a) C = ( x2 - 2x + 2021) / x2
b) D = ( x2 - 2x + 2015 ) / 2015x2